AI-supported Information Management in One-off Production.

被引:0
作者
Jagusch K. [1 ]
Gerds P. [2 ]
Knitter L. [2 ]
Sender J. [3 ]
Flügge W. [4 ]
机构
[1] Fraunhofer-Institut für Großstrukturen in der Produktionstechnik IGP, Albert-Einstein-Str. 3, Rostock
[2] Fraunhofer IGP, Rostock
[3] Lehrstuhl Produktionsorganisation und Logistik, Universität Rostock
[4] Lehrstuhl Fertigungstechnik, Universität Rostock
来源
ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb | 2023年 / 118卷 / 11期
关键词
Artificial Intelligence; Human-in-the-Loop; Information Management; One-off Production;
D O I
10.1515/zwf-2023-1148
中图分类号
学科分类号
摘要
Companies are currently facing a shortage of skilled workers in the future. This shortage will be exacerbated by demographic change. It is therefore more important to preserve the knowledge of experienced employees and to use it efficiently. The approach outlined here describes a way to process captured data with the help of artificial intelligence and use it for new orders. This is a step forward compared to the current status quo, as the application is presented in the context of one-off production. The paper shows the theoretical approach as well as the associated challenges in practical use. © 2023 Walter de Gruyter GmbH, Berlin/Boston, Germany.
引用
收藏
页码:812 / 815
页数:3
相关论文
共 10 条
[1]  
Krcmar H., Informationsmanagement, (2015)
[2]  
Leeser D.C., Digitalisierung in KMU kompakt, (2020)
[3]  
Jagusch K., Beuss F., Nehls C., Et al., Digitalisierung als Voraussetzung für den Wissenstransfer in produzierenden KMU, ZWF, 116, 11, pp. 826-830, (2021)
[4]  
Gust von Loh S., Evidenzbasiertes Wissensmanagement, (2009)
[5]  
Bodendorf F., Daten- und Wissensmanagement, (2003)
[6]  
Knitter L., Jagusch K., Scharr C., Et al., Human-in-the-Loop-Ansatz vereinfacht maschinelles Lernen für das Störungsmanagement, ZWF, 117, 10, pp. 623-628, (2022)
[7]  
Mosqueira-Rey E., Hernandez-Pereira E., Alonso-Rios D., Et al., Human-in-the-loop Machine Learning: A State of the Art, Artificial Intelligence Review, 56, 2022
[8]  
Jagusch K., Gerds P., Knitter L., Et al., Nachhaltige Datennutzung im Handwerk, ZWF, 117, 11, pp. 749-753, (2022)
[9]  
Sherman R., Wie man größere Probleme bei der Datenaufbereitung bewältigt
[10]  
Ul Haq I., Gondal I., Vamplew P., Et al., Categorical Features Transformation with Compact One-Hot Encoder for Fraud Detection in Distributed Environment, Data Mining, pp. 69-80, (2019)