Experiments with text-to-SPARQL based on ChatGPT

被引:9
作者
Avila, Caio Viktor S. [1 ]
Vidal, Vania M. P. [1 ]
Franco, Wellington [1 ]
Casanova, Marco A. [2 ]
机构
[1] Univ Fed Ceara, Dept Comp, BR-60440900 Fortaleza, Ceara, Brazil
[2] Pontif Catholic Univ Rio De Janeiro, Dept Informat, BR-22451900 Rio De Janeiro, Brazil
来源
18TH IEEE INTERNATIONAL CONFERENCE ON SEMANTIC COMPUTING, ICSC 2024 | 2024年
关键词
D O I
10.1109/ICSC59802.2024.00050
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, large language models (LLMs) are the state of the art for pre-trained language models. LLMs have been applied to many tasks, including question and answering over Knowledge Graphs (KGs) and text-to-SPARQL, that is, the translation of Natural Language questions to SPARQL queries. With such motivation, this paper first describes preliminary experiments to evaluate the ability of ChatGPT to answer NL questions over KGs. Based on these experiments, the paper introduces Auto-KGQAGPT, an autonomous domain-independent framework based on LLMs for text-to-SPARQL. The framework selects fragments of the KG, which the LLM uses to translate the user's NL question to a SPARQL query on the KG. Finally, the paper describes preliminary experiments with Auto-KGQAGPT with ChatGPT that indicate that the framework substantially reduced the number of tokens passed to ChatGPT without sacrificing performance.
引用
收藏
页码:277 / 284
页数:8
相关论文
共 12 条
[1]  
[Anonymous], Elasticsearch
[2]  
Beckett D., 2014, W3C RECOMMENDATION, P18
[3]  
Brown TB, 2020, ADV NEUR IN, V33
[4]  
de Figueiredo J. C. A., 2007, Tutorial de manipulacao~ de strings
[5]   Core techniques of question answering systems over knowledge bases: a survey [J].
Diefenbach, Dennis ;
Lopez, Vanessa ;
Singh, Kamal ;
Maret, Pierre .
KNOWLEDGE AND INFORMATION SYSTEMS, 2018, 55 (03) :529-569
[6]  
Feng C., 2023, ARXIV230903118
[7]  
Hirschman L., 2001, Natural Language Engineering, V7, P275, DOI 10.1017/S1351324901002807
[8]  
Kovriguina L., 2023, CEUR WORKSHOP P, V3526
[9]  
Qi Z., 2023, ARXIV230810173
[10]   SGPT: A Generative Approach for SPARQL Query Generation From Natural Language Questions [J].
Rony, Md Rashad Al Hasan ;
Kumar, Uttam ;
Teucher, Roman ;
Kovriguina, Liubov ;
Lehmann, Jens .
IEEE ACCESS, 2022, 10 :70712-70723