Multiplicity of Normalized Solutions for Schrodinger Equations

被引:4
作者
Lv, Yan-Cheng [1 ]
Li, Gui-Dong [1 ]
机构
[1] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear Schrodinger equation; Multiplicity; Normalized solution; Truncated functional; Variational methods; PRESCRIBED NORM; STANDING WAVES; EXISTENCE;
D O I
10.1007/s40840-024-01713-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the following nonlinear Schr & ouml;dinger equation with an L-2 -constraint: { -Delta u=lambda u+mu|u|(q-2)u+|u|(p-2)u in R-N, integral(N)(R)|u|(2)dx=a(2),u is an element of H-1(R-N) where N >= 3,a,mu >0, 2<q<2+4/N<p<2(& lowast;),2q+2N-pN<0 and lambda is an element of R arises as a Lagrange multiplier. We deal with the concave and convex cases of energy functional constraints on theL2sphere, and prove the existence of infinitely solutions with positive energy levels.
引用
收藏
页数:18
相关论文
共 26 条
[1]  
Alves C.O., 2023, Differ. Integ. Equ.
[2]  
Alves CO, 2022, Z ANGEW MATH PHYS, V73, DOI 10.1007/s00033-022-01741-9
[3]  
Alves CO, 2022, CALC VAR PARTIAL DIF, V61, DOI 10.1007/s00526-021-02123-1
[4]   ON AN ELLIPTIC EQUATION WITH CONCAVE AND CONVEX NONLINEARITIES [J].
BARTSCH, T ;
WILLEM, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (11) :3555-3561
[5]  
Bartsch T., 1993, Lecture Notes in Mathematics, V1560
[6]   Normalized solutions of mass supercritical Schrodinger equations with potential [J].
Bartsch, Thomas ;
Molle, Riccardo ;
Rizzi, Matteo ;
Verzini, Gianmaria .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2021, 46 (09) :1729-1756
[7]   A natural constraint approach to normalized solutions of nonlinear Schrodinger equations and systems [J].
Bartsch, Thomas ;
Soave, Nicola .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (12) :4998-5037
[8]   Normalized solutions of nonlinear Schrodinger equations [J].
Bartsch, Thomas ;
de Valeriola, Sebastien .
ARCHIV DER MATHEMATIK, 2013, 100 (01) :75-83
[9]   Existence and instability of standing waves with prescribed norm for a class of Schrodinger-Poisson equations [J].
Bellazzini, Jacopo ;
Jeanjean, Louis ;
Luo, Tingjian .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :303-339
[10]   ORBITAL STABILITY OF STANDING WAVES FOR SOME NON-LINEAR SCHRODING EQUATIONS [J].
CAZENAVE, T ;
LIONS, PL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 85 (04) :549-561