Challenges of variational quantum optimization with measurement shot noise

被引:13
作者
Scriva, Giuseppe [1 ,2 ,3 ]
Astrakhantsev, Nikita [4 ]
Pilati, Sebastiano [1 ,3 ]
Mazzola, Guglielmo [2 ]
机构
[1] Univ Camerino, Sch Sci & Technol, Phys Div, Via Madonna Carceri 9, I-62032 Camerino, MC, Italy
[2] Univ Zurich, Inst Computat Sci, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[3] INFN Sez Perugia, Via A Pascoli, I-06123 Perugia, Italy
[4] Univ Zurich, Dept Phys, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
APPROXIMATE OPTIMIZATION; ALGORITHM;
D O I
10.1103/PhysRevA.109.032408
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum enhanced optimization of classical cost functions is a central theme of quantum computing due to its high potential value in science and technology. The variational quantum eigensolver (VQE) and the quantum approximate optimization algorithm (QAOA) are popular variational approaches that are considered the most viable solutions in the noisy-intermediate scale quantum (NISQ) era. Here, we study the scaling of the quantum resources, defined as the required number of circuit repetitions, to reach a fixed success probability as the problem size increases, focusing on the role played by measurement shot noise, which is unavoidable in realistic implementations. Simple and reproducible problem instances are addressed, namely, the ferromagnetic and disordered Ising chains. Our results show that: (1) VQE with the standard heuristic Ansatz scales comparably to direct brute-force search when energy-based optimizers are employed. The performance improves at most quadratically using a gradient-based optimizer. (2) When the parameters are optimized from random guesses, also the scaling of QAOA implies problematically long absolute runtimes for large problem sizes. (3) QAOA becomes practical when supplemented with a physically inspired initialization of the parameters. Our results suggest that hybrid quantum-classical algorithms should possibly avoid a brute force classical outer loop, but focus on smart parameters initialization.
引用
收藏
页数:14
相关论文
共 70 条
[1]  
Abbas A, 2023, Arxiv, DOI [arXiv:2312.02279, 10.48550/arXiv.2312.02279]
[2]   Parameter concentrations in quantum approximate optimization [J].
Akshay, V ;
Rabinovich, D. ;
Campos, E. ;
Biamonte, J. .
PHYSICAL REVIEW A, 2021, 104 (01)
[3]   Demonstration of a Scaling Advantage for a Quantum Annealer over Simulated Annealing [J].
Albash, Tameem ;
Lidar, Daniel A. .
PHYSICAL REVIEW X, 2018, 8 (03)
[4]   Filtering variational quantum algorithms for combinatorial optimization [J].
Amaro, David ;
Modica, Carlo ;
Rosenkranz, Matthias ;
Fiorentini, Mattia ;
Benedetti, Marcello ;
Lubasch, Michael .
QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (01)
[5]  
Anis Sajid M., 2021, Qiskit: An open-source framework for quantum computing
[6]   Quantum supremacy using a programmable superconducting processor [J].
Arute, Frank ;
Arya, Kunal ;
Babbush, Ryan ;
Bacon, Dave ;
Bardin, Joseph C. ;
Barends, Rami ;
Biswas, Rupak ;
Boixo, Sergio ;
Brandao, Fernando G. S. L. ;
Buell, David A. ;
Burkett, Brian ;
Chen, Yu ;
Chen, Zijun ;
Chiaro, Ben ;
Collins, Roberto ;
Courtney, William ;
Dunsworth, Andrew ;
Farhi, Edward ;
Foxen, Brooks ;
Fowler, Austin ;
Gidney, Craig ;
Giustina, Marissa ;
Graff, Rob ;
Guerin, Keith ;
Habegger, Steve ;
Harrigan, Matthew P. ;
Hartmann, Michael J. ;
Ho, Alan ;
Hoffmann, Markus ;
Huang, Trent ;
Humble, Travis S. ;
Isakov, Sergei V. ;
Jeffrey, Evan ;
Jiang, Zhang ;
Kafri, Dvir ;
Kechedzhi, Kostyantyn ;
Kelly, Julian ;
Klimov, Paul V. ;
Knysh, Sergey ;
Korotkov, Alexander ;
Kostritsa, Fedor ;
Landhuis, David ;
Lindmark, Mike ;
Lucero, Erik ;
Lyakh, Dmitry ;
Mandra, Salvatore ;
McClean, Jarrod R. ;
McEwen, Matthew ;
Megrant, Anthony ;
Mi, Xiao .
NATURE, 2019, 574 (7779) :505-+
[7]   ON THE COMPUTATIONAL-COMPLEXITY OF ISING SPIN-GLASS MODELS [J].
BARAHONA, F .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10) :3241-3253
[8]   Improving Variational Quantum Optimization using CVaR [J].
Barkoutsos, Panagiotis Kl. ;
Nannicini, Giacomo ;
Robert, Anton ;
Tavernelli, Ivano ;
Woerner, Stefan .
QUANTUM, 2020, 4
[9]  
Binkowski L, 2023, Arxiv, DOI arXiv:2302.04968
[10]  
Boixo S, 2014, NAT PHYS, V10, P218, DOI [10.1038/nphys2900, 10.1038/NPHYS2900]