Recent progress in the study of integrated solar cell-energy storage systems

被引:10
作者
Lu, Yanqinpeng [2 ]
Chen, Mengxiang [1 ]
Zhu, Guoyin [1 ,3 ,4 ]
Zhang, Yizhou [1 ,3 ,4 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Inst Adv Mat & Flexible Elect IAMFE, Sch Chem & Mat Sci, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Reading Acad, Nanjing 210044, Peoples R China
[3] Nanjing Univ Posts & Telecommun, State Key Lab Organ Elect & Informat Displays, 9 Wenyuan Rd, Nanjing 210023, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Inst Adv Mat IAM, 9 Wenyuan Rd, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
POWER PACK; SUPERCAPACITOR; PEROVSKITE; CONVERSION; PHOTOVOLTAICS; EFFICIENCY; FIBER; ION;
D O I
10.1039/d4nr00839a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As fossil fuels continue to deplete, the development of sustainable and green energy sources has become crucial for human societal advancement. Among the various renewable energies, solar energy stands out as a promising substitute for conventional fossil fuels, offering widespread availability and a pollution-free solution. Solar cells, as devices that convert solar energy, are garnering significant focus. However, the intermittent nature of solar energy results in a high dependence on weather conditions of solar cells. Integrated solar cell-energy storage systems that integrate solar cells and energy storage devices may solve this problem by storing the generated electricity and managing the energy output. This review delves into the latest developments in integrated solar cell-energy storage systems, marrying various solar cells with either supercapacitors or batteries. It highlights their construction, material composition, and performance. Additionally, it discusses prevailing challenges and future possibilities, aiming to spark continued advancement and innovation in the sector. The intermittent nature of solar energy calls for integrated solar cell-energy storage systems that combine solar cells with various energy storage devices. This review summarizes recent advancements in these integrated systems, including design, performance evaluation and applications.
引用
收藏
页码:8778 / 8790
页数:13
相关论文
共 52 条
[1]   Review of fossil fuels and future energy technologies [J].
Abas, N. ;
Kalair, A. ;
Khan, N. .
FUTURES, 2015, 69 :31-49
[2]   Development towards cell-to-cell monolithic integration of a thin-film solar cell and lithium-ion accumulator [J].
Agbo, Solomon N. ;
Merdzhanova, Tsvetelina ;
Yu, Shicheng ;
Tempel, Hermann ;
Kungl, Hans ;
Eichel, Ruediger-A. ;
Rau, Uwe ;
Astakhov, Oleksandr .
JOURNAL OF POWER SOURCES, 2016, 327 :340-344
[3]   Photo-Rechargeable Organo-Halide Perovskite Batteries [J].
Ahmad, Shahab ;
George, Chandramohan ;
Beesley, David J. ;
Baumberg, Jeremy J. ;
De Volder, Michael .
NANO LETTERS, 2018, 18 (03) :1856-1862
[4]   A critical review of comparative global historical energy consumption and future demand: The story told so far [J].
Ahmad, Tanveer ;
Zhang, Dongdong .
ENERGY REPORTS, 2020, 6 :1973-1991
[5]   Single-Fiber-Based Hybridization of Energy Converters and Storage Units Using Graphene as Electrodes [J].
Bae, Joonho ;
Park, Young Jun ;
Lee, Minbaek ;
Cha, Seung Nam ;
Choi, Young Jin ;
Lee, Churl Seung ;
Kim, Jong Min ;
Wang, Zhong Lin .
ADVANCED MATERIALS, 2011, 23 (30) :3446-+
[6]   Photo-rechargeable zinc-ion batteries [J].
Boruah, Buddha Deka ;
Mathieson, Angus ;
Wen, Bo ;
Feldmann, Sascha ;
Dose, Wesley M. ;
De Volder, Michael .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (08) :2414-2421
[7]   Plastic dye-sensitized photo-supercapacitor using electrophoretic deposition and compression methods [J].
Chen, Hsin-Wei ;
Hsu, Chih-Yu ;
Chen, Jian-Ging ;
Lee, Kun-Mu ;
Wang, Chun-Chieh ;
Huang, Kuan-Chieh ;
Ho, Kuo-Chuan .
JOURNAL OF POWER SOURCES, 2010, 195 (18) :6225-6231
[8]   Solar-Driven Rechargeable Lithium-Sulfur Battery [J].
Chen, Peng ;
Li, Guo-Ran ;
Li, Tian-Tian ;
Gao, Xue-Ping .
ADVANCED SCIENCE, 2019, 6 (15)
[9]   Next-Generation Solar Cells and Conversion of Solar Energy [J].
Diau, Eric Wei-Guang .
ACS ENERGY LETTERS, 2017, 2 (02) :334-335
[10]   High-Entropy Prussian Blue Analogues and Their Oxide Family as Sulfur Hosts for Lithium-Sulfur Batteries [J].
Du, Meng ;
Geng, Pengbiao ;
Pei, Chenxu ;
Jiang, Xinyuan ;
Shan, Yuying ;
Hu, Wenhui ;
Ni, Lubin ;
Pang, Huan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (41)