Hierarchical Sparse Estimation of Non-Stationary Channel for Uplink Massive MIMO Systems

被引:0
作者
Tan, Chongyang [1 ]
Cai, Donghong [1 ]
Fang, Fang [2 ]
Shan, Jiahao [1 ]
Xu, Yanqing [3 ]
Ding, Zhiguo [4 ,5 ]
Fan, Pingzhi [6 ]
机构
[1] Jinan Univ, Coll Informat Sci & Technol, Guangzhou 510632, Peoples R China
[2] Western Univ, Dept Elect & Comp Engn, London, ON N6A5B9, Canada
[3] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China
[4] Khalifa Univ, Dept Elect Engn & Comp Sci, Abu Dhabi 127788, U Arab Emirates
[5] Univ Manchester, Sch Elect & Elect Engn, Manchester M13 9PL, England
[6] Southwest Jiaotong Univ, Inst Mobile Commun, Chengdu 611756, Peoples R China
来源
IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM | 2023年
基金
中国国家自然科学基金;
关键词
Non-stationary channel estimation; hierarchical sparse; compressive sensing; massive MIMO; MATCHING PURSUIT;
D O I
10.1109/GLOBECOM54140.2023.10437637
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a hierarchical sparse estimation of spatial non-stationarity channel for uplink massive multiple-input multiple-output (MIMO) systems without prior information. Especially, the non-zero rows of non-stationarity channel matrix are estimated according to the in-row correlation in the first layer; while the non-zero elements of the estimated non-zero rows are further refined in the second layer. A row-wise sparse adaptive matching pursuit (SAMP) is used to find the non-zero rows in the first layer of the proposed algorithms, and multiple non-zero rows can be estimated in one iteration, which has higher precision and lower complexity, compared to the conventional SAMP. Different from the existing two-layer iteration algorithms, a threshold is designed to estimate the non-zero elements replacing the iterative algorithm in the second layer. Further, the computation complexity is analyzed and compared. The simulation results demonstrate that the proposed threshold-enhanced hierarchical spatial non-ystationary channel estimation algorithms achieve better performance compared to various state-of-the-art baselines in terms of channel coefficient estimation, and computational efficiency.
引用
收藏
页码:6640 / 6645
页数:6
相关论文
共 14 条
[1]   Linear Receivers in Non-Stationary Massive MIMO Channels With Visibility Regions [J].
Ali, Anum ;
de Carvalho, Elisabeth ;
Heath, Robert W., Jr. .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2019, 8 (03) :885-888
[2]  
Cai D., 2020, SCI CHINA INFORM SCI, V1, P1
[3]   Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise [J].
Cai, T. Tony ;
Wang, Lie .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (07) :4680-4688
[4]   Adaptive Grouping Sparse Bayesian Learning for Channel Estimation in Non-Stationary Uplink Massive MIMO Systems [J].
Cheng, Xiantao ;
Xu, Ke ;
Sun, Jingjing ;
Li, Shaoqian .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2019, 18 (08) :4184-4198
[5]   NON-STATIONARITIES IN EXTRA-LARGE-SCALE MASSIVE MIMO [J].
De Carvalho, Elisabeth ;
Ali, Anum ;
Amiri, Abolfazl ;
Angjelichinoski, Marko ;
Heath, Robert W., Jr. .
IEEE WIRELESS COMMUNICATIONS, 2020, 27 (04) :74-80
[6]   SPARSITY ADAPTIVE MATCHING PURSUIT ALGORITHM FOR PRACTICAL COMPRESSED SENSING [J].
Do, Thong T. ;
Gan, Lu ;
Nguyen, Nam ;
Tran, Trac D. .
2008 42ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-4, 2008, :581-+
[7]   Compressed sensing [J].
Donoho, DL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (04) :1289-1306
[8]   Structured Compressive Sensing-Based Spatio-Temporal Joint Channel Estimation for FDD Massive MIMO [J].
Gao, Zhen ;
Dai, Linglong ;
Dai, Wei ;
Shim, Byonghyo ;
Wang, Zhaocheng .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2016, 64 (02) :601-617
[9]   Toward 6G Networks: Use Cases and Technologies [J].
Giordani, Marco ;
Polese, Michele ;
Mezzavilla, Marco ;
Rangan, Sundeep ;
Zorzi, Michele .
IEEE COMMUNICATIONS MAGAZINE, 2020, 58 (03) :55-61
[10]   Sparse Channel Estimation for Spatial Non-Stationary Massive MIMO Channels [J].
Hou, Shuai ;
Wang, Yafeng ;
Zeng, Tianyi ;
Wu, Sheng .
IEEE COMMUNICATIONS LETTERS, 2020, 24 (03) :681-684