Contravariant Curvatures of Doubly Warped Product Poisson Manifolds

被引:2
作者
Aloui, Foued [1 ]
Hui, Shyamal Kumar [2 ]
Al-Dayel, Ibrahim [1 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Sci, Dept Math & Stat, POB 65892, Riyadh 11566, Saudi Arabia
[2] Univ Burdwan, Dept Math, Burdwan 713104, W Bengal, India
关键词
doubly warped product; Poisson geometry; sectional contravariant curvature; qualar; curvature; GEOMETRY;
D O I
10.3390/math12081205
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the sectional contravariant curvature of a doubly warped product manifold ( fBxbF,g,Pi=Pi B+Pi F) equipped with a product Poisson structure Pi, using warping functions and sectional curvatures of its factor manifolds (B,gB,Pi B) and (F,gF,Pi F). Qualar and null sectional contravariant curvatures of ( fBxbF,g,Pi) are also given. As an example, we construct a four-dimensional Lorentzian doubly warped product Poisson manifold where qualar and sectional curvatures are obtained.
引用
收藏
页数:20
相关论文
共 21 条
[1]   Poisson Doubly Warped Product Manifolds [J].
Al-Dayel, Ibrahim ;
Aloui, Foued ;
Deshmukh, Sharief .
MATHEMATICS, 2023, 11 (03)
[2]   A geometrical interpretation of the null sectional curvature [J].
Albujer, A. L. ;
Haesen, S. .
JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (03) :471-476
[3]   Reduced Riemannian Poisson manifolds and Riemannian Poisson-Lie groups [J].
Aloui, Foued ;
Zaalani, Nadhem .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2020, 68
[4]  
Aloui F, 2018, J LIE THEORY, V28, P499
[5]   WARPED POISSON BRACKETS ON WARPED PRODUCTS [J].
Amrane, Yacine Ait ;
Nasri, Rafik ;
Zeglaoui, Ahmed .
JOURNAL OF GEOMETRIC MECHANICS, 2014, 6 (03) :279-296
[6]   Gravity theory on Poisson manifold with R-flux [J].
Asakawa, Tsuguhiko ;
Muraki, Hisayoshi ;
Watamura, Satoshi .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2015, 63 (11-12) :683-704
[7]  
Beem J., 1982, Selected studies: A volume dedicated to the memory of albert einstein, P41
[8]   MANIFOLDS OF NEGATIVE CURVATURE [J].
BISHOP, RL ;
ONEILL, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 145 :1-&
[9]   Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras [J].
Boucetta, A .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2004, 20 (03) :279-291
[10]  
Djebbouri D., 2015, GEN MATH NOTES, V31, P16