Self-Assembled Nonlinear Optical Crystals Based on an Asymmetric Fluorenone Derivative

被引:0
作者
Shi R. [1 ]
Han X. [1 ]
Cheng P. [1 ]
Xin M. [1 ]
Xu J. [1 ]
机构
[1] School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, National Institute for Advanced Materials, Nankai University, Tianjin
来源
Crystal Growth and Design | 2022年 / 22卷 / 07期
基金
中国国家自然科学基金;
关键词
This work was supported by the National Natural Science Foundation of China (Project No. 52172045);
D O I
10.1021/ACS.CGD.2C00342
中图分类号
学科分类号
摘要
Organic crystals demonstrating efficient nonlinear optical (NLO) effects are highly promising candidates for the next-generation photonics. However, the assembly of NLO molecules with high dipoles in a non-centrosymmetric (NCS) manner for second-order NLO effects remains a formidable challenge. Here, we develop the self-assemblies of a fluorenone derivative, 2-([1,1′-biphenyl]-4-yl)-7-phenyl-fluoren (2-Bp-7-PFO), with an asymmetric configuration, which exhibits efficient second-harmonic generation (SHG) response, large polarization ratio, and outstanding optical stability. Driven by the synergetic intermolecular interactions, 2-Bp-7-PFO molecules arrange in an NCS way with two different morphologies. The exploration of NLO properties of fluorenone derivate with asymmetrical configuration could provide a new platform for the construction of organic NLO materials and devices in the future. © 2022 American Chemical Society.
引用
收藏
页码:3998 / 4004
页数:6
相关论文
共 52 条
[1]  
Bao Q., Zhang H., Wang Y., Ni Z., Yan Y., Shen Z.X., Loh K.P., Tang D.Y., Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Lasers, Adv. Funct. Mater., 19, pp. 3077-3083, (2009)
[2]  
Liu M., Yin X., Ulin-Avila E., Geng B., Zentgraf T., Ju L., Wang F., Zhang X., A graphene-based broadband optical modulator, Nature, 474, pp. 64-67, (2011)
[3]  
Mingabudinova L.R., Vinogradov V.V., Milichko V.A., Hey-Hawkins E., Vinogradov A.V., Metal−organic frameworks as competitive materials for non-linear optics, Chem. Soc. Rev., 45, pp. 5408-5431, (2016)
[4]  
Guo S.-P., Chi Y., Guo G.-C., Recent achievements on middle and far-infrared second-order nonlinear optical materials, Coordin. Chem. Rev., 335, pp. 44-57, (2017)
[5]  
Yang Y.-C., Liu X., Lu J., Wu L.-M., Chen L., Ag(NH3)-2]2SO4: A Strategy for the Coordination of Cationic Moieties to Design Nonlinear Optical Materials**, Angew. Chem., Int. Ed., 2021, 60, pp. 21216-21220
[6]  
Lustig W.P., Mukherjee S., Rudd N.D., Desai A.V., Li J., Ghosh S.K., Metal-organic frameworks: functional luminescent and photonic materials for sensing applications, Chem. Soc. Rev., 46, pp. 3242-3285, (2017)
[7]  
Wang C., Zhang T., Lin W., Rational Synthesis of Non-centrosymmetric Metal−Organic Frameworks for Second-Order Nonlinear Optics, Chem. Rev., 112, pp. 1084-1104, (2012)
[8]  
Shi R., Han X., Xu J., Bu X.-H., Crystalline Porous Materials for Nonlinear Optics, Small, 2021, 17
[9]  
Wang C., Yun S., Fan Q., Wang Z., Zhang Y., Han F., Si Y., Hagfeldt A., A hybrid niobium-based oxide with bio-based porous carbon as an efficient electrocatalyst in photovoltaics: a general strategy for understanding the catalytic mechanism, J. Mater. Chem. A, 7, pp. 14864-14875, (2019)
[10]  
Xiong L., Wu L.-M., Chen L., A General Principle for DUV NLO Materials: π-Conjugated Confinement Enlarges Band Gap**, Angew. Chem., Int. Ed., 2021, 60, pp. 25063-25067