Learning Contrast-Enhanced Shape-Biased Representations for Infrared Small Target Detection

被引:13
作者
Lin, Fanzhao [1 ,2 ]
Bao, Kexin [1 ,2 ]
Li, Yong [1 ,2 ]
Zeng, Dan [3 ]
Ge, Shiming [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Informat Engn, Beijing 100095, Peoples R China
[2] Univ Chinese Acad Sci, Sch Cyber Secur, Beijing 100049, Peoples R China
[3] Shanghai Univ, Dept Commun Engn, Shanghai 200040, Peoples R China
关键词
Feature extraction; Shape; Object detection; Decoding; Convolutional codes; Convolution; Image edge detection; Infrared small target detection; representation learning; convolutional neural network; object segmentation; MODEL; DIM;
D O I
10.1109/TIP.2024.3391011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting infrared small targets under cluttered background is mainly challenged by dim textures, low contrast and varying shapes. This paper proposes an approach to facilitate infrared small target detection by learning contrast-enhanced shape-biased representations. The approach cascades a contrast-shape encoder and a shape-reconstructable decoder to learn discriminative representations that can effectively identify target objects. The contrast-shape encoder applies a stem of central difference convolutions and a few large-kernel convolutions to extract shape-preserving features from input infrared images. This specific design in convolutions can effectively overcome the challenges of low contrast and varying shapes in a unified way. Meanwhile, the shape-reconstructable decoder accepts the edge map of input infrared image and is learned by simultaneously optimizing two shape-related consistencies: the internal one decodes the encoder representations by upsampling reconstruction and constraints segmentation consistency, whilst the external one cascades three gated ResNet blocks to hierarchically fuse edge maps and decoder representations and constrains contour consistency. This decoding way can bypass the challenge of dim texture and varying shapes. In our approach, the encoder and decoder are learned in an end-to-end manner, and the resulting shape-biased encoder representations are suitable for identifying infrared small targets. Extensive experimental evaluations are conducted on public benchmarks and the results demonstrate the effectiveness of our approach.
引用
收藏
页码:3047 / 3058
页数:12
相关论文
共 72 条
[1]  
Anasosalu Vasu P. K., 2023, P IEEE CVF INT C COM, P5785
[2]  
[Anonymous], 2015, P 3 INT C LEARN REPR
[3]   Analysis of new top-hat transformation and the application for infrared dim small target detection [J].
Bai, Xiangzhi ;
Zhou, Fugen .
PATTERN RECOGNITION, 2010, 43 (06) :2145-2156
[4]   A Local Contrast Method for Small Infrared Target Detection [J].
Chen, C. L. Philip ;
Li, Hong ;
Wei, Yantao ;
Xia, Tian ;
Tang, Yuan Yan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01) :574-581
[5]  
Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
[6]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[7]   One-Stage Cascade Refinement Networks for Infrared Small Target Detection [J].
Dai, Yimian ;
Li, Xiang ;
Zhou, Fei ;
Qian, Yulei ;
Chen, Yaohong ;
Yang, Jian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[8]   Attentional Local Contrast Networks for Infrared Small Target Detection [J].
Dai, Yimian ;
Wu, Yiquan ;
Zhou, Fei ;
Barnard, Kobus .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (11) :9813-9824
[9]   Asymmetric Contextual Modulation for Infrared Small Target Detection [J].
Dai, Yimian ;
Wu, Yiquan ;
Zhou, Fei ;
Barnard, Kobus .
2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2021), 2021, :949-958
[10]   Reweighted Infrared Patch-Tensor Model With Both Nonlocal and Local Priors for Single-Frame Small Target Detection [J].
Dai, Yimian ;
Wu, Yiquan .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (08) :3752-3767