共 44 条
[1]
Zhu F., Lv Y., Chen Y., Wang X., Wang F., Parallel transportation systems: Toward IoT-enabled smart urban traffic control and management, IEEE Trans. Intell. Transp. Syst., 21, 10, pp. 4063-4071, (2020)
[2]
Cordts M., Et al., The cityscapes dataset for semantic urban scene understanding, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun., pp. 3213-3223, (2016)
[3]
Lin T.-Y., Et al., Microsoft COCO: Common objects in context, Proc. Eur. Conf. Comput. Vis., pp. 740-755, (2014)
[4]
Grandvalet Y., Bengio Y., Semi-supervised learning by entropy minimization, Proc. Adv. Neural Inf. Process. Syst., pp. 529-536, (2005)
[5]
Hung W.-C., Tsai Y.-H., Liou Y.-T., Lin Y.-Y., Yang M.-H., Adversarial Learning for Semi-supervised Semantic Segmentation, (2018)
[6]
Tarvainen A., Valpola H., Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results, Proc. Adv. Neural Inf. Process. Syst., pp. 1196-1205, (2017)
[7]
Miyato T., Maeda S.-I., Koyama M., Ishii S., Virtual adversarial training: A regularization method for supervised and semi-supervised learning, IEEE Trans. Pattern Anal. Mach. Intell., 41, 8, pp. 1979-1993, (2019)
[8]
Wang X., Kihara D., Luo J., Qi G.-J., EnAET: A self-trained framework for semi-supervised and supervised learning with ensemble transformations, IEEE Trans. Image Process., 30, pp. 1639-1647, (2021)
[9]
French G., Laine S., Aila T., Mackiewicz M., Finlayson G., Semisupervised Semantic Segmentation Needs Strong, Varied Perturbations, (2019)
[10]
Ouali Y., Hudelot C., Tami M., Semi-supervised semantic segmentation with cross-consistency training, Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp. 12671-12681, (2020)