Harmonic mean and geometric mean of a non negative random variable

被引:0
作者
Feng, Changyong [1 ]
Wang, Hongyue [2 ]
机构
[1] Univ Rochester, Dept Biostat & Computat Biol, Rochester, NY 14627 USA
[2] Univ Rochester, Dept Anesthesiol & Perioperat Med, Rochester, NY USA
关键词
Dominated convergence theorem; geometric mean; harmonic mean;
D O I
10.1080/03610926.2024.2349713
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we define the harmonic mean of a non negative random variable, reconstruct the famous HM-GM-AM inequality, and explore some convergence results related to these mean values.
引用
收藏
页码:1805 / 1812
页数:8
相关论文
共 8 条
[1]   LORENZ ORDERING OF MEANS AND MEDIANS [J].
ARNOLD, BC ;
VILLASENOR, JA .
STATISTICS & PROBABILITY LETTERS, 1986, 4 (01) :47-49
[2]  
Durrett R., 2019, PROBABILITY THEORY E, V49
[3]   Generalized definition of the geometric mean of a non negative random variable [J].
Feng, Changyong ;
Wang, Hongyue ;
Zhang, Yun ;
Han, Yu ;
Liang, Yuefeng ;
Tu, Xin M. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (07) :3614-3620
[4]   Geometric Mean of Nonnegative Random Variable [J].
Feng, Changyong ;
Wang, Hongyue ;
Tu, Xin M. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (15) :2714-2717
[5]  
Royden H.L., 2018, Real analysis
[6]  
Shao Jun., 2003, MATH STAT, DOI DOI 10.1007/B97553
[7]  
Steele J.M., 2004, CAUCHY SCHWARZ MASTE
[8]   The geometric mean? [J].
Vogel, Richard M. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (01) :82-94