Polymer/ceramic interfacial layer enables stable cycling of all-solid-state Li-metal batteries with sulfide electrolyte

被引:1
作者
Xiao, Kexin [1 ]
Ren, Pengfei [2 ]
Wang, Xiaofen [3 ]
Chen, Hong [1 ]
Zhou, Qiongyu [4 ]
机构
[1] Cent South Univ Forestry & Technol, Coll Mat Sci & Engn, Changsha 410004, Peoples R China
[2] China Univ Min & Technol Beijing, Beijing 100083, Peoples R China
[3] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[4] Foshan Univ, Sch Mat Sci & Hydrogen Energy, Foshan 528000, Peoples R China
关键词
Polymeric composites; Interfaces; All-solid-state batteries; Sulfide electrolyte; POLYMER ELECTROLYTES; IONIC-CONDUCTIVITY; LITHIUM ION;
D O I
10.1016/j.matlet.2024.136221
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The interfacial stability, particularly between lithium metal and the solid electrolyte, as a critical challenge in solid-state batteries leads to rapid lithium -dendrite growth and increased internal resistance. In this study, we tackled these issues by developing a stable interface between sulfide electrolytes Li5.5PS4.5Cl1.5 (LPSCl) and the metallic lithium anode, using a polyethylene oxide (PEO) layer integrated with Li -ion conducting oxide electrolyte Li1.3Al0.3Ti1.7(PO4)3 (LATP). The uniform distribution of LATP within the PEO matrix through a simple stirring process enhanced the mechanical strength of the PEO interlayer and minimizes both the interfacial reactions and lithium dendrite formation. A Li/Li symmetric cell incorporating this LATP-integrated layer exhibited a low interfacial resistance, ensuring stable cycling for 2800 h at a current density of 0.2 mA cm -2 at 60 degrees C.
引用
收藏
页数:4
相关论文
共 12 条
[1]   Polymer electrolytes for lithium ion batteries: a critical study [J].
Arya, Anil ;
Sharma, A. L. .
IONICS, 2017, 23 (03) :497-540
[2]   Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries [J].
Fan, Lei ;
Wei, Shuya ;
Li, Siyuan ;
Li, Qi ;
Lu, Yingying .
ADVANCED ENERGY MATERIALS, 2018, 8 (11)
[3]   Graphene Oxide Assemblies for Sustainable Clean-Water Harvesting and Green-Electricity Generation [J].
Huang, Yaxin ;
Wang, Chengzhi ;
Shao, Changxiang ;
Wang, Boyu ;
Chen, Nan ;
Jin, Haibo ;
Cheng, Huhu ;
Qu, Liangti .
ACCOUNTS OF MATERIALS RESEARCH, 2021, 2 (02) :97-107
[4]   Porous Mixed Ionic Electronic Conductor Interlayers for Solid-State Batteries [J].
Kim, So Yeon ;
Li, Ju .
ENERGY MATERIAL ADVANCES, 2021, 2021
[5]   Li metal anode interface in sulfide-based all-solid-state Li batteries [J].
Li, Jingyan ;
Luo, Jiayao ;
Li, Xiang ;
Fu, Yongzhu ;
Zhu, Jinhui ;
Zhuang, Xiaodong .
ECOMAT, 2023, 5 (08)
[6]   Solid Polymer Electrolyte Reinforced with a Li1.3Al0.3Ti1.7(PO4)3-Coated Separator for All-Solid-State Lithium Batteries [J].
Li, Shuai ;
Lu, Jiaze ;
Geng, Zhen ;
Chen, Yue ;
Yu, Xiqian ;
He, Meng ;
Li, Hong .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) :1195-1202
[7]   Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires [J].
Liu, Wei ;
Lee, Seok Woo ;
Lin, Dingchang ;
Shi, Feifei ;
Wang, Shuang ;
Sendek, Austin D. ;
Cui, Yi .
NATURE ENERGY, 2017, 2 (05)
[8]   Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density [J].
Placke, Tobias ;
Kloepsch, Richard ;
Duehnen, Simon ;
Winter, Martin .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2017, 21 (07) :1939-1964
[9]   Interphase Formation of PEO20:LiTFSI-Li6PS5Cl Composite Electrolytes with Lithium Metal [J].
Simon, Fabian J. ;
Hanauer, Matthias ;
Richter, Felix H. ;
Janek, Juergen .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (10) :11713-11723
[10]   Lithium-Salt-Rich PEO/Li0.3La0.557TiO3 Interpenetrating Composite Electrolyte with Three-Dimensional Ceramic Nano-Backbone for All-Solid-State Lithium-Ion Batteries [J].
Wang, Xinzhi ;
Zhang, Yibo ;
Zhang, Xue ;
Liu, Ting ;
Lin, Yuan-Hua ;
Li, Liangliang ;
Shen, Yang ;
Nan, Ce-Wen .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (29) :24791-24798