A Novel Physics Aware ANN-Based Framework for BSIM-CMG Model Parameter Extraction

被引:6
作者
Singhal, Anant [1 ]
Pahwa, Girish [2 ]
Agarwal, Harshit [1 ]
机构
[1] Indian Inst Technol, Jodhpur 342030, India
[2] Natl Yang Ming Chiao Tung Univ, Int Coll Semicond Technol, Hsinchu 30010, Taiwan
关键词
Resistance; Predictive models; Threshold voltage; Nanoscale devices; FinFETs; Adaptation models; Semiconductor device modeling; Artificial neural network (ANN); BSIM-CMG compact model; deep learning (DL); FinFET; parameter extraction; RESISTANCE; VOLTAGE;
D O I
10.1109/TED.2024.3381917
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, we present a novel deep learning (DL) framework that fully automates the parameter extraction process for the BSIM-CMG unified model for advanced semiconductor devices. The framework seamlessly integrates with the BSIM-CMG model, making it applicable to diverse advanced devices such as GAA nanosheets, nanowire FETs, and FinFETs. Unlike existing approach involving DL for parameter extraction, the proposed framework combines physics-driven parameter initialization and data-driven DL enhancing the computational efficiency and making it easy to implement. It leverages the BSIM-CMG model's versatility for initial parameter estimation, the efficiency of DL algorithms for model parameter prediction, and the adaptability to various device geometries and configuration. The framework has been successfully validated with extensive numerical simulations and experimental data from 14-nm FinFET device with varying channel widths, 12-nm nanosheet, and 24-nm nanowire FET.
引用
收藏
页码:3307 / 3314
页数:8
相关论文
共 27 条
[1]   BSIM-HV: High-Voltage MOSFET Model Including Quasi-Saturation and Self-Heating Effect [J].
Agarwal, H. ;
Gupta, C. ;
Goel, R. ;
Kushwaha, P. ;
Lin, Y. -K. ;
Kao, M. -Y. ;
Duarte, J. -P. ;
Chang, H. -L. ;
Chauhan, Y. S. ;
Salahuddin, S. ;
Hu, C. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2019, 66 (10) :4258-4263
[2]  
Agarwal H., 2023, BSIM BULKMOSFET MODE
[3]  
Alpaydin E., 2020, Introduction to machine learning, V4th
[4]   Deep Learning-Based Fast BSIM-CMG Parameter Extraction for General Input Dataset [J].
Ashai, Aasim ;
Jadhav, Aakash ;
Behera, Amit Kumar ;
Roy, Sourajeet ;
Dasgupta, Avirup ;
Sarkar, Biplab .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (07) :3437-3441
[5]  
BSIM-BULK, BSIM BULK 107 1 0 TE
[6]  
BSIM-CMG, BSIM CMG 111 1 0 TEC
[7]  
BSIM-IMG, BSIM IMG 102 9 4 TEC
[8]  
Chauhan Y.S., 2015, FINFET MODELING IC S
[9]   Deep Learning-Based ASM-HEMT I-V Parameter Extraction [J].
Chavez, Fredo ;
Davis, Devin T. ;
Miller, Nicholas C. ;
Khandelwal, Sourabh .
IEEE ELECTRON DEVICE LETTERS, 2022, 43 (10) :1633-1636
[10]   BSIM Compact Model of Quantum Confinement in Advanced Nanosheet FETs [J].
Dasgupta, Avirup ;
Parihar, Shivendra Singh ;
Kushwaha, Pragya ;
Agarwal, Harshit ;
Kao, Ming-Yen ;
Salahuddin, Sayeef ;
Chauhan, Yogesh Singh ;
Hu, Chenming .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (02) :730-737