A survey of energy-efficient strategies for federated learning inmobile edge computing

被引:1
|
作者
Yan, Kang [1 ]
Shu, Nina [1 ]
Wu, Tao [1 ,2 ]
Liu, Chunsheng [1 ]
Yang, Panlong [3 ]
机构
[1] Natl Univ Def Technol, Sch Elect Engn, Hefei 230009, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Hong Kong 999077, Peoples R China
[3] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Mobile edge computing; Federated learning; Energy-efficient; RESOURCE-ALLOCATION; NEURAL-NETWORKS; SELECTION; POWER;
D O I
10.1631/FITEE.2300181
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the booming development of fifth-generation network technology and Internet of Things, the number of end-user devices (EDs) and diverse applications is surging, resulting in massive data generated at the edge of networks. To process these data efficiently, the innovative mobile edge computing (MEC) framework has emerged to guarantee low latency and enable efficient computing close to the user traffic. Recently, federated learning (FL) has demonstrated its empirical success in edge computing due to its privacy-preserving advantages. Thus, it becomes a promising solution for analyzing and processing distributed data on EDs in various machine learning tasks, which are the major workloads in MEC. Unfortunately, EDs are typically powered by batteries with limited capacity, which brings challenges when performing energy-intensive FL tasks. To address these challenges, many strategies have been proposed to save energy in FL. Considering the absence of a survey that thoroughly summarizes and classifies these strategies, in this paper, we provide a comprehensive survey of recent advances in energy-efficient strategies for FL in MEC. Specifically, we first introduce the system model and energy consumption models in FL, in terms of computation and communication. Then we analyze the challenges regarding improving energy efficiency and summarize the energy-efficient strategies from three perspectives: learning-based, resource allocation, and client selection. We conduct a detailed analysis of these strategies, comparing their advantages and disadvantages. Additionally, we visually illustrate the impact of these strategies on the performance of FL by showcasing experimental results. Finally, several potential future research directions for energy-efficient FL are discussed.
引用
收藏
页码:645 / 663
页数:19
相关论文
共 50 条
  • [1] Energy-Efficient Dynamic Asynchronous Federated Learning in Mobile Edge Computing Networks
    Xu, Guozeng
    Li, Xiuhua
    Li, Hui
    Fan, Qilin
    Wang, Xiaofei
    Leung, Victor C. M.
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 160 - 165
  • [2] Energy-efficient Personalized Federated Search with Graph for Edge Computing
    Yang, Zhao
    Sun, Qingshuang
    ACM TRANSACTIONS ON EMBEDDED COMPUTING SYSTEMS, 2023, 22 (05)
  • [3] Energy-Efficient Client Sampling for Federated Learning in Heterogeneous Mobile Edge Computing Networks
    Tang, Jian
    Li, Xiuhua
    Li, Hui
    Xiong, Min
    Wang, Xiaofei
    Leung, Victor C. M.
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 956 - 961
  • [4] Energy-Efficient Device Selection in Federated Edge Learning
    Peng, Cheng
    Hu, Qin
    Chen, Jianan
    Kang, Kyubyung
    Li, Feng
    Zou, Xukai
    30TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATIONS AND NETWORKS (ICCCN 2021), 2021,
  • [5] Energy-Efficient Personalized Federated Continual Learning on Edge
    Yang, Zhao
    Wang, Haoyang
    Sun, Qingshuang
    IEEE EMBEDDED SYSTEMS LETTERS, 2024, 16 (04) : 345 - 348
  • [6] Energy-Efficient and Privacy-Preserved Incentive Mechanism for Federated Learning in Mobile Edge Computing
    Liu, Jingyuan
    Chang, Zheng
    Min, Geyong
    Zhang, Yan
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 172 - 178
  • [7] Energy-Efficient Resource Management for Federated Edge Learning With CPU-GPU Heterogeneous Computing
    Zeng, Qunsong
    Du, Yuqing
    Huang, Kaibin
    Leung, Kin K.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (12) : 7947 - 7962
  • [8] Energy-Efficient Federated Learning for Wireless Computing Power Networks
    Li, Zongjun
    Zhang, Haibin
    Wang, Qubeijian
    Sun, Wen
    Zhang, Yan
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [9] Federated Learning for Energy-Efficient Task Computing in Wireless Networks
    Wang, Sihua
    Chen, Mingzhe
    Saad, Walid
    Yin, Changchuan
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [10] Energy-Efficient Radio Resource Allocation for Federated Edge Learning
    Zeng, Qunsong
    Du, Yuqing
    Huang, Kaibin
    Leung, Kin K.
    2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS (ICC WORKSHOPS), 2020,