Prediction models for retinopathy of prematurity occurrence based on artificial neural network

被引:3
作者
Wu, Rong [1 ]
Chen, He [2 ]
Bai, Yichen [1 ]
Zhang, Yu [1 ]
Feng, Songfu [1 ]
Lu, Xiaohe [1 ]
机构
[1] Southern Med Univ, Zhujiang Hosp, Dept Ophthalmol, 253 Gongyedadao Middle Rd City, Guangzhou 510282, Guangdong, Peoples R China
[2] Peking Union Med Coll Hosp, Dept Ophthalmol, 5 Summer Palace Rd, Beijing 100000, Peoples R China
关键词
Retinopathy of prematurity; Artificial neural network; Prediction model; Clinical screening; LONGITUDINAL POSTNATAL WEIGHT; RISK-FACTORS; GESTATIONAL-AGE; BIRTH-WEIGHT; POPULATION; INFANTS; GAIN;
D O I
10.1186/s12886-024-03562-y
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
IntroductionEarly prediction and timely treatment are essential for minimizing the risk of visual loss or blindness of retinopathy of prematurity, emphasizing the importance of ROP screening in clinical routine.ObjectiveTo establish predictive models for ROP occurrence based on the risk factors using artificial neural network.MethodsA cohort of 591 infants was recruited in this retrospective study. The association between ROP and perinatal factors was analyzed by univariate analysis and multivariable logistic regression. We developed predictive models for ROP screening using back propagation neural network, which was further optimized by applying genetic algorithm method. To assess the predictive performance of the models, the areas under the curve, sensitivity, specificity, negative predictive value, positive predictive value and accuracy were used to show the performances of the prediction models.ResultsROP of any stage was found in 193 (32.7%) infants. Twelve risk factors of ROP were selected. Based on these factors, predictive models were built using BP neural network and genetic algorithm-back propagation (GA-BP) neural network. The areas under the curve for prediction models were 0.857, and 0.908 in test, respectively.ConclusionsWe developed predictive models for ROP using artificial neural network. GA-BP neural network exhibited superior predictive ability for ROP when dealing with its non-linear clinical data.
引用
收藏
页数:9
相关论文
共 35 条
[1]   Incidence, risk factors and severity of retinopathy of prematurity in Turkey (TR-ROP study): a prospective, multicentre study in 69 neonatal intensive care units [J].
Bas, Ahmet Yagmur ;
Demirel, Nihal ;
Koc, Esin ;
Isik, Dilek Ulubas ;
Hirfanoglu, Ibrahim Murat ;
Tunc, Turan ;
Sari, Fatma Nur ;
Karatekin, Guner ;
Koklu, Esad ;
Altunhan, Huseyin ;
Turgut, Hatice ;
Narter, Fatma ;
Tarakci, Nuriye ;
Tekgunduz, Kadir Serafettin ;
Ozkiraz, Servet ;
Aydemir, Cumhur ;
Ozdemir, Ahmet ;
Cetinkaya, Bilin ;
Kazanci, Ebru ;
Tastekin, Ayhan ;
Calkavur, Sebnem ;
Ozyurt, Banu Mutlu ;
Demirelli, Yasar ;
Asker, Huseyin Selim ;
Mutlu, Birgul ;
Uygur, Ozgun ;
Ozkan, Hilal ;
Armangil, Didem ;
Ozlu, Ferda ;
Mert, Mustafa Kurthan ;
Ergin, Hacer ;
Ozcan, Beyza ;
Bas, Evrim Kiray ;
Okulu, Emel ;
Acunas, Betul ;
Celik, Ulker ;
Uslu, Sait Ilker ;
Mutlu, Mehmet ;
Demir, Nihat ;
Eroglu, Funda ;
Gokmen, Zeynel ;
Beken, Serdar ;
Bayraktar, Bilge Tanyeri ;
Hakan, Nilay ;
Kucuktasci, Kazim ;
Orman, Aysen ;
Comert, Serdar ;
Ertugrul, Sabahattin ;
Ustun, Nuran ;
Sahin, Ozlem .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2018, 102 (12) :1711-1716
[2]   Artificial Neural Network for Prediction of Distant Metastasis in Colorectal Cancer [J].
Biglarian, Akbar ;
Bakhshi, Enayatollah ;
Gohari, Mahmood Reza ;
Khodabakhshi, Reza .
ASIAN PACIFIC JOURNAL OF CANCER PREVENTION, 2012, 13 (03) :927-930
[3]   The CHOP Postnatal Weight Gain, Birth Weight, and Gestational Age Retinopathy of Prematurity Risk Model [J].
Binenbaum, Gil ;
Ying, Gui-shuang ;
Quinn, Graham E. ;
Huang, Jiayan ;
Dreiseitl, Stephan ;
Antigua, Jules ;
Foroughi, Negar ;
Abbasi, Soraya .
ARCHIVES OF OPHTHALMOLOGY, 2012, 130 (12) :1560-1565
[4]   A Clinical Prediction Model to Stratify Retinopathy of Prematurity Risk Using Postnatal Weight Gain [J].
Binenbaum, Gil ;
Ying, Gui-Shuang ;
Quinn, Graham E. ;
Dreiseitl, Stephan ;
Karp, Karen ;
Roberts, Robin S. ;
Kirpalani, Haresh .
PEDIATRICS, 2011, 127 (03) :E607-E614
[5]   Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010 [J].
Blencowe, Hannah ;
Lawn, Joy E. ;
Vazquez, Thomas ;
Fielder, Alistair ;
Gilbert, Clare .
PEDIATRIC RESEARCH, 2013, 74 :35-49
[6]   The Colorado-retinopathy of prematurity model (CO-ROP): postnatal weight gain screening algorithm [J].
Cao, Jennifer H. ;
Wagner, Brandie D. ;
McCourt, Emily A. ;
Cerda, Ashlee ;
Sillau, Stefan ;
Palestine, Alan ;
Enzenauer, Robert W. ;
Mets-Halgrimson, Rebecca B. ;
Paciuc-Beja, Miguel ;
Gralla, Jane ;
Braverman, Rebecca S. ;
Lynch, Anne .
JOURNAL OF AAPOS, 2016, 20 (01) :19-24
[7]   Infection, Oxygen, and Immaturity: Interacting Risk Factors for Retinopathy of Prematurity [J].
Chen, Minghua ;
Citil, Ayse ;
McCabe, Frank ;
Leicht, Katherine M. ;
Fiascone, John ;
Dammann, Christiane E. L. ;
Dammann, Olaf .
NEONATOLOGY, 2011, 99 (02) :125-132
[8]   Using recurrent neural network models for early detection of heart failure onset [J].
Choi, Edward ;
Schuetz, Andy ;
Stewart, Walter F. ;
Sun, Jimeng .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2017, 24 (02) :361-370
[9]  
Zepeda-Romero LC, 2012, ARCH OPHTHALMOL-CHIC, V130, P720, DOI 10.1001/archophthalmol.2012.215
[10]  
Dang Hui,Su Wenlong,Tang Zhiqing, 2022, J Front Neurosci, V16, P1031712