Artificial Intelligence-Enabled Electrocardiography Predicts Future Pacemaker Implantation and Adverse Cardiovascular Events

被引:0
|
作者
Hung, Yuan [1 ]
Lin, Chin [2 ,3 ,4 ]
Lin, Chin-Sheng [1 ]
Lee, Chiao-Chin [1 ]
Fang, Wen-Hui [2 ,5 ]
Lee, Chia-Cheng [6 ,7 ]
Wang, Chih-Hung [8 ,9 ]
Tsai, Dung-Jang [2 ,4 ,10 ]
机构
[1] Natl Def Med Ctr Taipei, Triserv Gen Hosp, Dept Internal Med, Div Cardiol, Taipei, Taiwan
[2] Natl Def Med Ctr, Triserv Gen Hosp, Artificial Intelligence Things Ctr, Taipei, Taiwan
[3] Natl Def Med Ctr, Sch Publ Hlth, Taipei, Taiwan
[4] Natl Def Med Ctr, Med Technol Educ Ctr, Sch Med, Taipei, Taiwan
[5] Natl Def Med Ctr, Triserv Gen Hosp, Dept Family & Community Med, Taipei, Taiwan
[6] Natl Def Med Ctr, Triserv Gen Hosp, Med Informat Off, Taipei, Taiwan
[7] Natl Def Med Ctr, Triserv Gen Hosp, Dept Surg, Div Colorectal Surg, Taipei, Taiwan
[8] Natl Def Med Ctr, Triserv Gen Hosp, Dept Otolaryngol Head & Neck Surg, Taipei, Taiwan
[9] Natl Def Med Ctr, Grad Inst Med Sci, Taipei, Taiwan
[10] Fu Jen Catholic Univ, Dept Stat & Informat Sci, 510 Zhongzheng Rd, New Taipei City 242062, Taiwan
关键词
Artificial intelligence; Electrocardiogram; Deep learning model; Pacemaker; Major adverse cardiovascular events; AORTIC-VALVE-REPLACEMENT; QUALITY-OF-LIFE; P-WAVE AXIS; EUROPEAN-SOCIETY; TRANSCATHETER; RISK; OUTCOMES; COLLEGE; SYNCOPE; TRIAL;
D O I
10.1007/s10916-024-02088-6
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Medical advances prolonging life have led to more permanent pacemaker implants. When pacemaker implantation (PMI) is commonly caused by sick sinus syndrome or conduction disorders, predicting PMI is challenging, as patients often experience related symptoms. This study was designed to create a deep learning model (DLM) for predicting future PMI from ECG data and assess its ability to predict future cardiovascular events. In this study, a DLM was trained on a dataset of 158,471 ECGs from 42,903 academic medical center patients, with additional validation involving 25,640 medical center patients and 26,538 community hospital patients. Primary analysis focused on predicting PMI within 90 days, while all-cause mortality, cardiovascular disease (CVD) mortality, and the development of various cardiovascular conditions were addressed with secondary analysis. The study's raw ECG DLM achieved area under the curve (AUC) values of 0.870, 0.878, and 0.883 for PMI prediction within 30, 60, and 90 days, respectively, along with sensitivities exceeding 82.0% and specificities over 81.9% in the internal validation. Significant ECG features included the PR interval, corrected QT interval, heart rate, QRS duration, P-wave axis, T-wave axis, and QRS complex axis. The AI-predicted PMI group had higher risks of PMI after 90 days (hazard ratio [HR]: 7.49, 95% CI: 5.40-10.39), all-cause mortality (HR: 1.91, 95% CI: 1.74-2.10), CVD mortality (HR: 3.53, 95% CI: 2.73-4.57), and new-onset adverse cardiovascular events. External validation confirmed the model's accuracy. Through ECG analyses, our AI DLM can alert clinicians and patients to the possibility of future PMI and related mortality and cardiovascular risks, aiding in timely patient intervention.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Applications of artificial intelligence-enabled robots and chatbots in ophthalmology: recent advances and future trends
    Madadi, Yeganeh
    Delsoz, Mohammad
    Khouri, Albert S.
    Boland, Michael
    Grzybowski, Andrzej
    Yousefi, Siamak
    CURRENT OPINION IN OPHTHALMOLOGY, 2024, 35 (03) : 238 - 243
  • [32] Privacy Preservation in Artificial Intelligence-Enabled Healthcare Analytics
    Li, Shancang
    Iqbal, Muddesar
    Bashir, Ali Kashif
    Wang, Xinheng
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2025, 15 : 1 - 15
  • [33] Screening and diagnosis of cardiovascular disease using artificial intelligence-enabled cardiac magnetic resonance imaging
    Wang, Yan-Ran
    Yang, Kai
    Wen, Yi
    Wang, Pengcheng
    Hu, Yuepeng
    Lai, Yongfan
    Wang, Yufeng
    Zhao, Kankan
    Tang, Siyi
    Zhang, Angela
    Zhan, Huayi
    Lu, Minjie
    Chen, Xiuyu
    Yang, Shujuan
    Dong, Zhixiang
    Wang, Yining
    Liu, Hui
    Zhao, Lei
    Huang, Lu
    Li, Yunling
    Wu, Lianming
    Chen, Zixian
    Luo, Yi
    Liu, Dongbo
    Zhao, Pengbo
    Lin, Keldon
    Wu, Joseph C.
    Zhao, Shihua
    NATURE MEDICINE, 2024, 30 (05) : 1471 - +
  • [34] Artificial intelligence-enabled electrocardiogram screens low left ventricular ejection fraction with a degree of confidence
    Lee, Chun-Ho
    Liu, Wei-Ting
    Lou, Yu-Sheng
    Lin, Chin-Sheng
    Fang, Wen-Hui
    Lee, Chia-Cheng
    Ho, Ching-Liang
    Wang, Chih-Hung
    Lin, Chin
    DIGITAL HEALTH, 2022, 8
  • [35] Prediction of premature ventricular complex origins using artificial intelligence-enabled algorithms
    Nakamura, Tomofumi
    Nagata, Yasutoshi
    Nitta, Giichi
    Okata, Shinichiro
    Nagase, Masashi
    Mitsui, Kentaro
    Watanabe, Keita
    Miyazaki, Ryoichi
    Kaneko, Masakazu
    Nagamine, Sho
    Hara, Nobuhiro
    Lee, Tetsumin
    Nozato, Toshihiro
    Ashikaga, Takashi
    Goya, Masahiko
    Sasano, Tetsuo
    CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2021, 2 (01): : 76 - 83
  • [36] Artificial intelligence-enabled penicillin allergy delabelling: an implementation study
    Stretton, Brandon
    Jiang, Melinda
    Kovoor, Joshua
    Inglis, Joshua M.
    Lam, Lydia
    Tan, Sheryn
    Yuson, Chino
    Smith, William
    Shakib, Sepehr
    Bacchi, Stephen
    INTERNAL MEDICINE JOURNAL, 2023, 53 (11) : 2119 - 2122
  • [37] The regulatory environment for artificial intelligence-enabled devices in the United States
    Liang, Nathan L.
    Chung, Timothy K.
    Vorp, David A.
    SEMINARS IN VASCULAR SURGERY, 2023, 36 (03) : 435 - 439
  • [38] In the Direction of an Artificial Intelligence-Enabled Monitoring Platform for Concrete Structures
    Cosoli, Gloria
    Calcagni, Maria Teresa
    Salerno, Giovanni
    Mancini, Adriano
    Narang, Gagan
    Galdelli, Alessandro
    Mobili, Alessandra
    Tittarelli, Francesca
    Revel, Gian Marco
    SENSORS, 2024, 24 (02)
  • [39] Explainable paroxysmal atrial fibrillation diagnosis using an artificial intelligence-enabled electrocardiogram
    Jin, Yeongbong
    Ko, Bonggyun
    Chang, Woojin
    Choi, Kang-Ho
    Lee, Ki Hong
    KOREAN JOURNAL OF INTERNAL MEDICINE, 2025, : 251 - 261
  • [40] An artificial intelligence-enabled consumables tracking system for medical laboratories
    Sritart, Hiranya
    Tosranon, Prasong
    Taertulakarn, Somchat
    JOURNAL OF INTELLIGENT SYSTEMS, 2024, 33 (01)