Modeling and multi-objective optimization of the milling process for AISI 1060 steel

被引:4
作者
Amira, Mohammed Toufik [1 ]
Rezgui, Imane [1 ]
Belloufi, Abderrahim [1 ]
Abdelkrim, Mourad [1 ]
Touggui, Youssef [1 ]
Chiba, Elhocine [1 ]
Catalin, Tampu [2 ]
Chirita, Bogdan [2 ]
机构
[1] Kasdi Merbah Univ, Fac Sci Appl, Lab Mecan Appl & Syst Energet LMASE, Ouargla 30000, Algeria
[2] Vasile Alecsandri Univ Bacau, Dept Engn & Management Ind Syst, Fac Engn, Bacau, Romania
关键词
Milling; AISI; 1060; Multi-objective optimization; Modeling; Cutting temperature; Microhardness; Surface roughness; CUTTING PARAMETERS; SURFACE-ROUGHNESS; INTEGRITY; LIFE;
D O I
10.1007/s00170-024-13693-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, an experimental study was carried out to investigate the influence of the cutting parameters namely cutting speed (Vc)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({V}_{c})$$\end{document}, feed per tooth (fz)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({f}_{z})$$\end{document}, and depth of cut (ap)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({a}_{p})$$\end{document} on three machining performance aspects, including cutting temperature (Qs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({Q}_{s})$$\end{document}, surface roughness (Ra)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({R}_{a})$$\end{document}, and microhardness (H)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(H)$$\end{document} when milling of AISI 1060 steel. Response surface methodology (RSM)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\text{RSM}})$$\end{document} was used for evaluating and predicting the impact of the considered cutting parameters on the selected machining characteristic indices. The results revealed that the error rates of the developed models compared to experimental ones were found to be as follows: 3.19% for Qs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${Q}_{s}$$\end{document}, 5.32% for Ra\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}_{a}$$\end{document}, 1.63% for H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document}, These error rates underscore the robustness and reliability of the developed models in accurately predicting the respective machining characteristics. Moreover, this study stands out in its approach by leveraging the experimentally developed RSM models as constraints within the optimization framework, providing a more precise and tailored approach compared to relying on generalized empirical models commonly found in industry handbooks. This is why a multi-objective optimization using genetic algorithm (GA) was performed to minimize both the production time and the production cost per unit by defining the problem with three key cutting parameters and utilizing the experimentally derived response surface methodology (RSM) models as constraints. For instance, the (Ra)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({R}_{a})$$\end{document} and H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H$$\end{document} -based RSM model served as constraints ensuring surface roughness and microhardness values below a specified threshold while satisfying other machining constraints (tool life, cutting force, cutting power). As a result, a set of optimal solutions of combinations of cutting parameters is achieved for simultaneously minimum production time and cost per unit.
引用
收藏
页码:5705 / 5732
页数:28
相关论文
共 33 条
[1]   Precision Face Milling of Maraging Steel 350: An Experimental Investigation and Optimization Using Different Machine Learning Techniques [J].
Abbas, Adel T. ;
Helmy, Mohamed O. ;
Al-Abduljabbar, Abdulhamid A. ;
Soliman, Mahmoud S. ;
Hasan, Ali S. ;
Elkaseer, Ahmed .
MACHINES, 2023, 11 (11)
[2]  
AISI, G10600 UNS AISI
[3]   Investigation of the Impact of Selected Face Milling Parameters on the Roughness of the Machined Surface for 1.4301 Steel [J].
Bembenek, Michal ;
Dzienniak, Damian ;
Dzindziora, Agnieszka ;
Sulowski, Maciej ;
Ropyak, Liubomyr .
ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2023, 17 (04) :299-312
[4]  
Cheng DJ, 2020, INT J PRECIS ENG MAN, V21, P1597
[5]   Multi-objective Optimization of CNC Milling Parameters of 7075 Aluminium Alloy Using Response Surface Methodology [J].
Cong Chi Tran ;
Van Tuan Luu ;
Van Tuu Nguyen ;
Van Tung Tran ;
Van Tuong Tran ;
Huy Dai Vu .
JORDAN JOURNAL OF MECHANICAL AND INDUSTRIAL ENGINEERING, 2023, 17 (03) :393-402
[6]  
Groover M.P., 2007, FUNDAMENTALS MODERN
[7]  
Hernández-González Luis Wilfredo, 2018, Dyna rev.fac.nac.minas, V85, P57, DOI [10.15446/dyna.v85n205.64798, 10.15446/dyna.v85n205.64798]
[8]   Surface integrity optimization for ball-end hard milling of AISI D2 steel based on response surface methodology [J].
Huang, Weimin ;
Wan, Cong ;
Wang, Guijie ;
Zhang, Guosong .
PLOS ONE, 2023, 18 (08)
[9]   Experimental investigations and empirical modeling for optimization of surface roughness and machining time parameters in micro end milling using Genetic Algorithm [J].
Kumar, S. P. Leo .
MEASUREMENT, 2018, 124 :386-394
[10]   Modeling and multi-objective optimization of cutting parameters in the high-speed milling using RSM and improved TLBO algorithm [J].
Li, Bo ;
Tian, Xitian ;
Zhang, Min .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2020, 111 (7-8) :2323-2335