Low-temperature thermal and physical properties of lunar meteorites

被引:1
|
作者
Macke, R. J. [1 ,6 ]
Opeil, C. P. [2 ]
Britt, D. T. [3 ,4 ]
Consolmagno, G. J. [1 ]
Irving, A. [5 ]
机构
[1] Vatican Observ, Vatican City, Vatican
[2] Boston Coll, Dept Phys, Chestnut Hill, MA 02167 USA
[3] Univ Cent Florida, Dept Phys, Orlando, FL USA
[4] Ctr Lunar & Asteroid Surface Sci, Orlando, FL USA
[5] Univ Washington Earth & Space Sci, Seattle, WA USA
[6] Vatican Observ, V-00120 Vatican City, Vatican
关键词
THERMOPHYSICAL PROPERTIES; HEAT-CAPACITY; CRYSTAL-CHEMISTRY; MARE BASALTS; BULLETIN; SURFACE; MOON; CONDUCTIVITY; EXPANSION; PETROGENESIS;
D O I
10.1111/maps.14171
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Lunar meteorites are the most diverse and readily available specimens for the direct laboratory study of lunar surface materials. In addition to informing us about the composition and heterogeneity of lunar material, measurements of their thermo-physical properties provide data necessary to inform the models of the thermal evolution of the lunar surface and provide data on fundamental physical properties of the surface material for the design of exploration and resource extraction hardware. Low-temperature data are particularly important for the exploration of low-temperature environments of the lunar poles and permanently shadowed regions. We report low-temperature-specific heat capacity, thermal conductivity, and linear thermal expansion for six lunar meteorites: Northwest Africa [NWA] 5000, NWA 6950, NWA 8687, NWA 10678, NWA 11421, and NWA 11474, over the range 5 <= T <= 300 K. From these, we calculate thermal inertia and thermal diffusivity as functions of temperature. Additionally, heat capacities were measured for 15 other lunar meteorites, from which we calculate their Debye temperature and effective molar mass.
引用
收藏
页码:1610 / 1631
页数:22
相关论文
共 50 条
  • [21] Low-temperature thermal properties of molecular glasses and crystals
    Vieira, S
    Ramos, MA
    Zou, QW
    Talon, C
    PHASE TRANSITIONS, 1997, 64 (1-2) : 87 - 102
  • [22] Low-temperature thermal properties of yttrium and lutetium dodecaborides
    Czopnik, A
    Shitsevalova, N
    Pluzhnikov, V
    Krivchikov, A
    Paderno, Y
    Onuki, Y
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (38) : 5971 - 5985
  • [23] Low-temperature thermal properties of a hyperaged geological glass
    Perez-Castaneda, Tomas
    Jimenez Rioboo, Rafael J.
    Ramos, Miguel A.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2013, 25 (29)
  • [24] THERMAL-PROPERTIES OF CLINKERS OF THE LOW-TEMPERATURE SYNTHESIS
    CHERKINSKII, IS
    ORLOV, BA
    KOMSOLEV, VS
    DOKLADY AKADEMII NAUK SSSR, 1979, 247 (04): : 898 - 901
  • [25] LOW-TEMPERATURE MAGNETIC AND THERMAL-PROPERTIES OF CEPDSB
    TROVARELLI, O
    SERENI, JG
    SCHMERBER, G
    KAPPLER, JP
    PHYSICAL REVIEW B, 1994, 49 (21): : 15179 - 15183
  • [26] LOW-TEMPERATURE INSULATION - THERMAL INSULATION FOR LOW-TEMPERATURE APPLICATION
    BRADLEY, CB
    STONE, JF
    CHEMICAL ENGINEERING PROGRESS, 1948, 44 (09) : 723 - 726
  • [27] PHYSICAL PROPERTIES OF COBALTOUS OXIDE PREPARED AT LOW-TEMPERATURE - REPLY
    MULLEN, JG
    PHYSICAL REVIEW B, 1973, 8 (03): : 1267 - 1268
  • [28] LOW-TEMPERATURE PHASE-TRANSFORMATIONS IN THE METALLIC PHASES OF METEORITES
    REUTER, KB
    WILLIAMS, DB
    GOLDSTEIN, JI
    METEORITICS, 1987, 22 (04): : 488 - 488
  • [29] The thermal and radiation exposure history of lunar meteorites
    Benoit, PH
    Sears, DWG
    Symes, SJK
    METEORITICS & PLANETARY SCIENCE, 1996, 31 (06): : 869 - 875
  • [30] Low-temperature thermal properties of Ge-As-S glasses
    Vateva, E
    Terziyska, B
    Misiorek, H
    Jezowski, A
    Wlosewicz, D
    Arsova, D
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2005, 7 (01): : 357 - 360