Arboreal Galois groups for quadratic rational functions with colliding critical points

被引:1
作者
Benedetto, Robert L. [1 ]
Dietrich, Anna [2 ]
机构
[1] Amherst Coll, Amherst, MA 01002 USA
[2] Brown Univ, Providence, RI 02912 USA
关键词
37P05; 11R32; 14G25;
D O I
10.1007/s00209-024-03566-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a field, and let f is an element of K(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in K(z)$$\end{document} be rational function. The preimages of a point x0 is an element of P1(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0\in \mathbb {P}<^>1(K)$$\end{document} under iterates of f have a natural tree structure. As a result, the Galois group of the resulting field extension of K naturally embeds into the automorphism group of this tree. In unpublished work from 2013, Pink described a certain proper subgroup M & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\ell }$$\end{document} that this so-called arboreal Galois group G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} must lie in if f is quadratic and its two critical points collide at the & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-th iteration. After presenting a new description of M & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\ell }$$\end{document} and a new proof of Pink's theorem, we state and prove necessary and sufficient conditions for G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} to be the full group M & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\ell }$$\end{document}.
引用
收藏
页数:33
相关论文
共 26 条
  • [1] The arithmetic basilica: A quadratic PCF arboreal Galois group
    Ahmad, Faseeh
    Benedetto, Robert L.
    Cain, Jennifer
    Carroll, Gregory
    Fang, Lily
    [J]. JOURNAL OF NUMBER THEORY, 2022, 238 : 842 - 868
  • [2] Aitken W, 2005, INT MATH RES NOTICES, V2005, P855
  • [3] Odoni's conjecture for number fields
    Benedetto, Robert L.
    Juul, Jamie
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2019, 51 (02) : 237 - 250
  • [4] A large arboreal Galois representation for a cubic postcritically finite polynomial
    Benedetto R.L.
    Faber X.
    Hutz B.
    Juul J.
    Yasufuku Y.
    [J]. Research in Number Theory, 3 (1)
  • [5] Arboreal Galois representations
    Boston, Nigel
    Jones, Rafe
    [J]. GEOMETRIAE DEDICATA, 2007, 124 (01) : 27 - 35
  • [6] Dynamical Belyi maps and arboreal Galois groups
    Bouw, Irene I.
    Ejder, Ozlem
    Karemaker, Valentijn
    [J]. MANUSCRIPTA MATHEMATICA, 2021, 165 (1-2) : 1 - 34
  • [7] Finite index theorems for iterated Galois groups of cubic polynomials
    Bridy, Andrew
    Tucker, Thomas J.
    [J]. MATHEMATISCHE ANNALEN, 2019, 373 (1-2) : 37 - 72
  • [8] Galois groups of iterates of some unicritical polynomials
    Bush, Michael R.
    Hindes, Wade
    Looper, Nicole R.
    [J]. ACTA ARITHMETICA, 2017, 181 (01) : 57 - 73
  • [9] Ferraguti A, 2023, Arxiv, DOI arXiv:1907.08608
  • [10] AVERAGE ZSIGMONDY SETS, DYNAMICAL GALOIS GROUPS, AND THE KODAIRA-SPENCER MAP
    Hindes, Wade
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (09) : 6391 - 6410