Let K be a field, and let f is an element of K(z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in K(z)$$\end{document} be rational function. The preimages of a point x0 is an element of P1(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x_0\in \mathbb {P}<^>1(K)$$\end{document} under iterates of f have a natural tree structure. As a result, the Galois group of the resulting field extension of K naturally embeds into the automorphism group of this tree. In unpublished work from 2013, Pink described a certain proper subgroup M & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\ell }$$\end{document} that this so-called arboreal Galois group G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} must lie in if f is quadratic and its two critical points collide at the & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document}-th iteration. After presenting a new description of M & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\ell }$$\end{document} and a new proof of Pink's theorem, we state and prove necessary and sufficient conditions for G infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G_{\infty }$$\end{document} to be the full group M & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{\ell }$$\end{document}.
机构:
Washington & Lee Univ, Dept Math, 204 W Washington St, Lexington, VA 24450 USAWashington & Lee Univ, Dept Math, 204 W Washington St, Lexington, VA 24450 USA
Bush, Michael R.
Hindes, Wade
论文数: 0引用数: 0
h-index: 0
机构:
CUNY, Grad Ctr, Dept Math, 365 Fifth Ave, New York, NY 10016 USAWashington & Lee Univ, Dept Math, 204 W Washington St, Lexington, VA 24450 USA
Hindes, Wade
Looper, Nicole R.
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USAWashington & Lee Univ, Dept Math, 204 W Washington St, Lexington, VA 24450 USA
机构:
Washington & Lee Univ, Dept Math, 204 W Washington St, Lexington, VA 24450 USAWashington & Lee Univ, Dept Math, 204 W Washington St, Lexington, VA 24450 USA
Bush, Michael R.
Hindes, Wade
论文数: 0引用数: 0
h-index: 0
机构:
CUNY, Grad Ctr, Dept Math, 365 Fifth Ave, New York, NY 10016 USAWashington & Lee Univ, Dept Math, 204 W Washington St, Lexington, VA 24450 USA
Hindes, Wade
Looper, Nicole R.
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USAWashington & Lee Univ, Dept Math, 204 W Washington St, Lexington, VA 24450 USA