Approximation by Riemann-Liouville type fractional α -Bernstein-Kantorovich operators

被引:12
作者
Berwal, Sahil [1 ]
Mohiuddine, S. A. [2 ,3 ]
Kajla, Arun [1 ]
Alotaibi, Abdullah [3 ]
机构
[1] Cent Univ Haryana, Sch Basic Sci, Jaat 123031, Haryana, India
[2] King Abdulaziz Univ, Appl Coll, Dept Gen Required Courses, Math, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Operator Theory & Applicat Res Grp, Jeddah, Saudi Arabia
关键词
Chebyshev-Gruss inequality; Gruss-Voronovskaya; modulus of continuity; Riemann-Liouville type fractional; GRUSS-TYPE; INEQUALITIES; VARIANT;
D O I
10.1002/mma.10014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research paper, we construct a new sequence of Riemann-Liouville type fractional alpha-Bernstein-Kantorovich operators. We prove a Korovkin type approximation theorem and discuss the rate of convergence with the first order modulus of continuity of these operators. Further, we study Voronovskaja type theorem, quantitative Voronovskaya type theorem, Chebyshev-Gruss inequality and Gruss-Voronovskaya type theorem.
引用
收藏
页码:8275 / 8288
页数:14
相关论文
共 43 条
[11]  
Chen M. Y., 2022, J MATH-UK, V4190732, P11, DOI DOI 10.1155/2022/4190732
[12]   Approximation of functions by a new family of generalized Bernstein operators [J].
Chen, Xiaoyan ;
Tan, Jieqing ;
Liu, Zhi ;
Xie, Jin .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (01) :244-261
[13]  
Deo N, 2020, AFR MAT, V31, P609, DOI 10.1007/s13370-019-00746-4
[14]  
Ditzian Z., 1987, MODULI SMOOTHNESS
[15]  
Gal S. G., 2015, Jaen J. Approx., V7, P97, DOI [10.48550/arXiv.1401.6824, DOI 10.48550/ARXIV.1401.6824]
[16]   Grüss and Grüss-Voronovskaya-type estimates for complex convolution polynomial operators [J].
Gal, Sorin G. ;
Iancu, Ionut T. .
CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2021, 4 (01) :20-33
[17]  
Gonska H., 2008, VORONOVSKAYA ESTIMAT
[18]  
Gonska H, 2011, MAT VESTN, V63, P247
[19]   Modified Kantorovich operators with better approximation properties [J].
Gupta, Vijay ;
Tachev, Gancho ;
Acu, Ana-Maria .
NUMERICAL ALGORITHMS, 2019, 81 (01) :125-149
[20]  
Gupta V, 2018, POSITIVITY, V22, P415, DOI 10.1007/s11117-017-0518-5