Approximation by Riemann-Liouville type fractional α -Bernstein-Kantorovich operators

被引:12
作者
Berwal, Sahil [1 ]
Mohiuddine, S. A. [2 ,3 ]
Kajla, Arun [1 ]
Alotaibi, Abdullah [3 ]
机构
[1] Cent Univ Haryana, Sch Basic Sci, Jaat 123031, Haryana, India
[2] King Abdulaziz Univ, Appl Coll, Dept Gen Required Courses, Math, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Operator Theory & Applicat Res Grp, Jeddah, Saudi Arabia
关键词
Chebyshev-Gruss inequality; Gruss-Voronovskaya; modulus of continuity; Riemann-Liouville type fractional; GRUSS-TYPE; INEQUALITIES; VARIANT;
D O I
10.1002/mma.10014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this research paper, we construct a new sequence of Riemann-Liouville type fractional alpha-Bernstein-Kantorovich operators. We prove a Korovkin type approximation theorem and discuss the rate of convergence with the first order modulus of continuity of these operators. Further, we study Voronovskaja type theorem, quantitative Voronovskaya type theorem, Chebyshev-Gruss inequality and Gruss-Voronovskaya type theorem.
引用
收藏
页码:8275 / 8288
页数:14
相关论文
共 43 条
[1]   Quantitative q-Voronovskaya and q-Gruss-Voronovskaya-type results for q-Szasz operators [J].
Acar, Tuncer .
GEORGIAN MATHEMATICAL JOURNAL, 2016, 23 (04) :459-468
[2]   Asymptotic Formulas for Generalized Szasz-Mirakyan Operators [J].
Acar, Tuncer .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 263 :233-239
[3]   GRUSS-TYPE AND OSTROWSKI-TYPE INEQUALITIES IN APPROXIMATION THEORY [J].
Acu, A. M. ;
Gonska, H. ;
Rasa, I. .
UKRAINIAN MATHEMATICAL JOURNAL, 2011, 63 (06) :843-864
[4]   SOME APPROXIMATION RESULTS ON A CLASS OF NEW TYPE λ-BERNSTEIN POLYNOMIALS [J].
Aslan, Resat ;
Mursaleen, Mohammad .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (02) :445-462
[5]   APPROXIMATION PROPERTIES OF RIEMANN-LIOUVILLE TYPE FRACTIONAL BERNSTEIN-KANTOROVICH OPERATORS OF ORDER [J].
Baytunc, Erdem ;
Aktuglu, Huseyin ;
Mahmudov, Nazim I. .
MATHEMATICAL FOUNDATIONS OF COMPUTING, 2024, 7 (04) :544-567
[6]  
Bernstein S., 1912, COMMUNICATIONS KHARK, V13, P1
[7]  
Braha T., 2021, J APPL MATH COMPUT, V65, P146
[8]   Directs estimates and a Voronovskaja-type formula for Mihesan operators [J].
Bustamante, Jorge .
CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2022, 5 (04) :202-213
[9]   The Bezier variant of Kantorovich type λ-Bernstein operators [J].
Cai, Qing-Bo .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
[10]   Approximation properties of λ-Bernstein operators [J].
Cai, Qing-Bo ;
Lian, Bo-Yong ;
Zhou, Guorong .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,