Existence of positive periodic solutions for Liénard equation with a singularity of repulsive type

被引:0
作者
Zhu, Yu [1 ]
机构
[1] Maanshan Univ, Maanshan 243000, Peoples R China
关键词
Li & eacute; nard equation; Periodic solutions; Singularity; Continuation theorem; 2ND-ORDER DIFFERENTIAL-EQUATIONS; LIENARD EQUATIONS; MULTIPLICITY;
D O I
10.1186/s13661-024-01894-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence of positive periodic solutions is studied for Li & eacute;nard equation with a singularity of repulsive type, x ''(t)+f(x(t))x '(t)+phi(t)x mu(t)-1x gamma(t)=e(t),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x''(t)+f(x(t))x'(t)+\varphi (t)x<^>{\mu}(t)-\frac{1}{x<^>{\gamma}(t)}=e(t), $$\end{document} where f:(0,+infinity)-> R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f:(0,+\infty )\rightarrow R$\end{document} is continuous, which may have a singularity at the origin, the sign of phi(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\varphi (t)$\end{document}, e(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$e(t)$\end{document} is allowed to change, and mu, gamma are positive constants. By using a continuation theorem, as well as the techniques of a priori estimates, we show that this equation has a positive T-periodic solution when mu is an element of[0,+infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu \in [0,+\infty )$\end{document}.
引用
收藏
页数:12
相关论文
共 23 条
[1]   Positive solutions for fourth-order singular nonlinear differential equation with variable-coefficient [J].
Cheng, Zhibo ;
Ren, Jingli .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (09) :2251-2274
[2]   Multiplicity results of positive solutions for fourth-order nonlinear differential equation with singularity [J].
Cheng, Zhibo ;
Ren, Jingli .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (18) :5284-5304
[3]   Periodic solutions of second order non-autonomous singular dynamical systems [J].
Chu, Jifeng ;
Torres, Pedro J. ;
Zhang, Meirong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 239 (01) :196-212
[4]   PERIODIC-SOLUTIONS OF SOME LIENARD EQUATIONS WITH SINGULARITIES [J].
HABETS, P ;
SANCHEZ, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 109 (04) :1035-1044
[5]  
Hakl R, 2012, TOPOL METHOD NONL AN, V39, P199
[6]   On periodic solutions of second-order differential equations with attractive-repulsive singularities [J].
Hakl, Robert ;
Torres, Pedro J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 248 (01) :111-126
[7]   Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response [J].
Huang, Jicai ;
Ruan, Shigui ;
Song, Jing .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (06) :1721-1752
[8]  
Jebelean P, 2002, ADV NONLINEAR STUD, V2, P299
[9]   Multiplicity of positive periodic solutions to superlinear repulsive singular equations [J].
Jiang, DQ ;
Chu, JF ;
Zhang, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 211 (02) :282-302
[10]   Positive Periodic Solutions for Singular Higher Order Delay Differential Equations [J].
Kong, Fanchao ;
Lu, Shiping ;
Luo, Zhiguo .
RESULTS IN MATHEMATICS, 2017, 72 (1-2) :71-86