On Convergence of the Uniform Norm and Approximation for Stochastic Processes from the Space Fψ(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{F}}_\psi (\Omega )$$\end{document}

被引:0
作者
Iryna Rozora [1 ]
Yurii Mlavets [3 ]
Olga Vasylyk [2 ]
Volodymyr Polishchuk [3 ]
机构
[1] Taras Shevchenko National University of Kyiv,
[2] Uzhhorod National University,undefined
[3] National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,undefined
关键词
Approximation for stochastic processes; Model; Simulation; Series decomposition; The space ; 60G07; 60G15; 65C20; 68U20;
D O I
10.1007/s10959-023-01309-x
中图分类号
学科分类号
摘要
In this paper, we consider random variables and stochastic processes from the space Fψ(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{F}}_\psi (\Omega )$$\end{document} and study approximation problems for such processes. The method of series decomposition of a stochastic process from Fψ(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{F}}_\psi (\Omega )$$\end{document} is used to find an approximating process called a model. The rate of convergence of the model to the process in the uniform norm is investigated. We develop an approach for estimating the cut-off level of the model under given accuracy and reliability of the simulation.
引用
收藏
页码:1627 / 1653
页数:26
相关论文
共 31 条
[11]  
Rozora IV(2005)On convergence of the uniform norms for Gaussian processes and linear approximation problems Methodol. Comput. Appl. Probab. 7 379-80
[12]  
Turchyn YV(2018)Spline approximation of random processes and design problems Bulll. Taras Shevchenko Natl. Univ. Kyiv Series: Phys. Math. 2 75-137
[13]  
Kozacenko YV (2018)Simulation of weakly self-similar stationary increment Monte Carlo Methods Appl. 24 129-244
[14]  
Rozora IV(2015)-processes: a series expansion approach Monte Carlo Methods Appl. 21 233-220
[15]  
Kozachenko YV(1995)On simulation accuracy and reliability in the space Rand. Oper. Stoch. Equs. 3 201-undefined
[16]  
Mlavets YY(undefined) for the input Gaussian process served by the linear system taking into account the output undefined undefined undefined-undefined
[17]  
Hüsler J(undefined)On the modeling of linear system input stochastic processes with given accuracy and reliability undefined undefined undefined-undefined
[18]  
Hüsler J(undefined)Reliability and accuracy in the space undefined undefined undefined-undefined
[19]  
Piterbarg V(undefined) for the calculation of integrals depending on a parameter by Monte-Carlo method undefined undefined undefined-undefined
[20]  
Seleznjev O(undefined)Boundary-value problems for equations of mathematical physics with strictly Orlicz random initial conditions undefined undefined undefined-undefined