On Convergence of the Uniform Norm and Approximation for Stochastic Processes from the Space Fψ(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{F}}_\psi (\Omega )$$\end{document}

被引:0
作者
Iryna Rozora [1 ]
Yurii Mlavets [3 ]
Olga Vasylyk [2 ]
Volodymyr Polishchuk [3 ]
机构
[1] Taras Shevchenko National University of Kyiv,
[2] Uzhhorod National University,undefined
[3] National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,undefined
关键词
Approximation for stochastic processes; Model; Simulation; Series decomposition; The space ; 60G07; 60G15; 65C20; 68U20;
D O I
10.1007/s10959-023-01309-x
中图分类号
学科分类号
摘要
In this paper, we consider random variables and stochastic processes from the space Fψ(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{F}}_\psi (\Omega )$$\end{document} and study approximation problems for such processes. The method of series decomposition of a stochastic process from Fψ(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{F}}_\psi (\Omega )$$\end{document} is used to find an approximating process called a model. The rate of convergence of the model to the process in the uniform norm is investigated. We develop an approach for estimating the cut-off level of the model under given accuracy and reliability of the simulation.
引用
收藏
页码:1627 / 1653
页数:26
相关论文
共 31 条
[1]  
Ermakov SV(1986)Continuity conditions, exponential estimates, and the central limit theorem for random fields Dep. VINITI 3752 42-121
[2]  
Ostrovskii EI(2013)The Banach spaces Theory Probab. Math. Stat. 86 105-489
[3]  
Kozachenko YV(1981) of random variables Ukrain. Math. J. 32 483-184
[4]  
Mlavets YY(2011)Sub-Gaussian random variables Stoch. Anal. Appl. 29 169-3683
[5]  
Buldygin VV(2011)Uniform convergence of wavelet expansions of Gaussian random processes Commun. Stat. Theory Methods 40 3672-232
[6]  
Kozachenko YV(2016)Properties of some random series Stat. Optim. Inform. Comput. 4 214-75
[7]  
Kozachenko Y(2014)A criterion for testing hypothesis about impulse response function Contemporary Math. Stat. 2 55-258
[8]  
Olenko A(1999)Stochastic processes from Stat. Probab. Lett. 44 251-1653
[9]  
Polosmak O(2003) spaces The Ann. Appl. Probab. 13 1615-262
[10]  
Kozachenko YV(2000)Extremes of Gaussian processes, on results of Piterbarg and Seleznjev J. Stat. Plan. Inference. 84 249-400