GDAFormer: Gradient-guided Dual Attention Transformer for Low-Dose CT image denoising

被引:5
作者
Jiang, Guowei [1 ,2 ]
Luo, Ting [1 ,2 ]
Xu, Haiyong [2 ]
Nie, Sheng [3 ]
Song, Yang [1 ,2 ]
He, Zhouyan [1 ,2 ]
机构
[1] Ningbo Univ, Coll Sci & Technol, Ningbo 315212, Peoples R China
[2] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Peoples R China
[3] Ningbo Univ, affiliated Hosp 1, Ningbo 315201, Peoples R China
关键词
Low-dose CT; Denoising; Gradient-guided; -guided Dual attention transformer; COMPUTED-TOMOGRAPHY; NOISE-REDUCTION; RECONSTRUCTION; NETWORK;
D O I
10.1016/j.bspc.2024.106260
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Low -Dose Computed Tomography (LDCT) image denoising is an important problem in the research field of CT, as LDCT images exhibit significant noise and artifacts compared to normal -dose CT images. To address this issue, we propose an LDCT image denoising model named Gradient -guided Dual -Attention TransFormer (GDAFormer), which adopts an encoder-decoder structure. Specifically, in the encoding part, the Gradient Denoising Module (GDM) is utilized to obtain the clean gradient map for effectively extracting edge and structure features, and they are fused with LDCT image features by Cross -Attention Transformer (CAT). The decoding part employs a Dual Self -Attention Transformer (DSAT) to capture inter -channel correlations within the fused feature maps and pixel -level correlations within individual channels, thereby improving denoising performance. Experimental results on the MayoLDCT dataset demonstrate that our proposed GDAFormer achieves competitive performance in terms of quantitative metrics and visual perceptual quality.
引用
收藏
页数:12
相关论文
共 51 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   Ray Contribution Masks for Structure Adaptive Sinogram Filtering [J].
Balda, Michael ;
Hornegger, Joachim ;
Heismann, Bjoern .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (06) :1228-1239
[3]   HyperTransformer: A Textural and Spectral Feature Fusion Transformer for Pansharpening [J].
Bandara, Wele Gedara Chaminda ;
Patel, Vishal M. .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1757-1767
[4]   Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network [J].
Chen, Hu ;
Zhang, Yi ;
Kalra, Mannudeep K. ;
Lin, Feng ;
Chen, Yang ;
Liao, Peixi ;
Zhou, Jiliu ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (12) :2524-2535
[5]   Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing [J].
Chen, Yang ;
Yin, Xindao ;
Shi, Luyao ;
Shu, Huazhong ;
Luo, Limin ;
Coatrieux, Jean-Louis ;
Toumoulin, Christine .
PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (16) :5803-5820
[6]   Bayesian statistical reconstruction for low-dose X-ray computed tomography using an adaptive-weighting nonlocal prior [J].
Chen, Yang ;
Gao, Dazhi ;
Nie, Cong ;
Luo, Limin ;
Chen, Wufan ;
Yin, Xindao ;
Lin, Yazhong .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (07) :495-500
[7]   MixFormer: End-to-End Tracking with Iterative Mixed Attention [J].
Cui, Yutao ;
Jiang, Cheng ;
Wang, Limin ;
Wu, Gangshan .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :13598-13608
[8]   CA-Net: A Novel Cascaded Attention-Based Network for Multistage Glaucoma Classification Using Fundus Images [J].
Das, Dipankar ;
Nayak, Deepak Ranjan ;
Pachori, Ram Bilas .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72 :1-10
[9]   A review on CT image noise and its denoising [J].
Diwakar, Manoj ;
Kumar, Manoj .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2018, 42 :73-88
[10]   CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows [J].
Dong, Xiaoyi ;
Bao, Jianmin ;
Chen, Dongdong ;
Zhang, Weiming ;
Yu, Nenghai ;
Yuan, Lu ;
Chen, Dong ;
Guo, Baining .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, :12114-12124