Inhibition mechanisms of CRISPR-Cas9 by AcrIIA25.1 and AcrIIA32

被引:0
作者
Zheng, Jianlin [1 ]
Zhu, Yuwei [1 ]
Huang, Tengjin [1 ]
Gao, Wenbo [1 ]
He, Jiale [2 ]
Huang, Zhiwei [1 ,2 ]
机构
[1] Harbin Inst Technol, HIT Ctr Life Sci, Sch Life Sci & Technol, Harbin 150080, Peoples R China
[2] Westlake Univ, Westlake Ctr Genome Editing, Sch Life Sci, Westlake Lab Life Sci & Biomed, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金; 黑龙江省自然科学基金;
关键词
anti-CRISPR; cryo-EM; SpyCas9; AcrIIA25.1; AcrIIA32; inhibiton; COMPLEX; CAS9; CLASSIFICATION; BACTERIOPHAGE; VISUALIZATION; SYSTEM; RNA;
D O I
10.1007/s11427-024-2607-8
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the ongoing arms race between bacteria and bacteriophages, bacteriophages have evolved anti-CRISPR proteins to counteract bacterial CRISPR-Cas systems. Recently, AcrIIA25.1 and AcrIIA32 have been found to effectively inhibit the activity of SpyCas9 both in bacterial and human cells. However, their molecular mechanisms remain elusive. Here, we report the cryo-electron microscopy structures of ternary complexes formed by AcrIIA25.1 and AcrIIA32 bound to SpyCas9-sgRNA. Using structural analysis and biochemical experiments, we revealed that AcrIIA25.1 and AcrIIA32 recognize a novel, previously-unidentified anti-CRISPR binding site on SpyCas9. We found that both AcrIIA25.1 and AcrIIA32 directly interact with the WED domain, where they spatially obstruct conformational changes of the WED and PI domains, thereby inhibiting SpyCas9 from recognizing protospacer adjacent motif (PAM) and unwinding double-stranded DNA. In addition, they may inhibit nuclease activity by blocking the dynamic conformational changes of the SpyCas9 surveillance complex. In summary, our data elucidate the inhibition mechanisms of two new anti-CRISPR proteins, provide new strategies for the modulation of SpyCas9 activity, and expand our understanding of the diversity of anti-CRISPR protein inhibition mechanisms.
引用
收藏
页码:1781 / 1791
页数:11
相关论文
共 40 条
[1]   PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution [J].
Adams, Paul D. ;
Afonine, Pavel V. ;
Bunkoczi, Gabor ;
Chen, Vincent B. ;
Davis, Ian W. ;
Echols, Nathaniel ;
Headd, Jeffrey J. ;
Hung, Li-Wei ;
Kapral, Gary J. ;
Grosse-Kunstleve, Ralf W. ;
McCoy, Airlie J. ;
Moriarty, Nigel W. ;
Oeffner, Robert ;
Read, Randy J. ;
Richardson, David C. ;
Richardson, Jane S. ;
Terwilliger, Thomas C. ;
Zwart, Peter H. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :213-221
[2]   Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease [J].
Anders, Carolin ;
Niewoehner, Ole ;
Duerst, Alessia ;
Jinek, Martin .
NATURE, 2014, 513 (7519) :569-+
[3]   CRISPR provides acquired resistance against viruses in prokaryotes [J].
Barrangou, Rodolphe ;
Fremaux, Christophe ;
Deveau, Helene ;
Richards, Melissa ;
Boyaval, Patrick ;
Moineau, Sylvain ;
Romero, Dennis A. ;
Horvath, Philippe .
SCIENCE, 2007, 315 (5819) :1709-1712
[4]   Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system [J].
Bondy-Denomy, Joe ;
Pawluk, April ;
Maxwell, Karen L. ;
Davidson, Alan R. .
NATURE, 2013, 493 (7432) :429-U181
[5]   Structural basis for mismatch surveillance by CRISPR-Cas9 [J].
Bravo, Jack P. K. ;
Liu, Mu-Sen ;
Hibshman, Grace N. ;
Dangerfield, Tyler L. ;
Jung, Kyungseok ;
McCool, Ryan S. ;
Johnson, Kenneth A. ;
Taylor, David W. .
NATURE, 2022, 603 (7900) :343-347
[6]   Engineered anti-CRISPR proteins for optogenetic control of CRISPR-Cas9 [J].
Bubeck, Felix ;
Hoffmann, Mareike D. ;
Harteveld, Zander ;
Aschenbrenner, Sabine ;
Bietz, Andreas ;
Waldhauer, Max C. ;
Boerner, Kathleen ;
Fakhiri, Julia ;
Schmelas, Carolin ;
Dietz, Laura ;
Grimm, Dirk ;
Correia, Bruno E. ;
Eils, Roland ;
Niopek, Dominik .
NATURE METHODS, 2018, 15 (11) :924-+
[7]   MolProbity: all-atom structure validation for macromolecular crystallography [J].
Chen, Vincent B. ;
Arendall, W. Bryan, III ;
Headd, Jeffrey J. ;
Keedy, Daniel A. ;
Immormino, Robert M. ;
Kapral, Gary J. ;
Murray, Laura W. ;
Richardson, Jane S. ;
Richardson, David C. .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 :12-21
[8]   Anti-CRISPRs: Protein Inhibitors of CRISPR-Cas Systems [J].
Davidson, Alan R. ;
Lu, Wang-Ting ;
Stanley, Sabrina Y. ;
Wang, Jingrui ;
Mejdani, Marios ;
Trost, Chantel N. ;
Hicks, Brian T. ;
Lee, Jooyoung ;
Sontheimer, Erik J. .
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 89, 2020, 89 :309-332
[9]   Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein [J].
Dong, De ;
Guo, Minghui ;
Wang, Sihan ;
Zhu, Yuwei ;
Wang, Shuo ;
Xiong, Zhi ;
Yang, Jianzheng ;
Xu, Zengliang ;
Huang, Zhiwei .
NATURE, 2017, 546 (7658) :436-+
[10]   Features and development of Coot [J].
Emsley, P. ;
Lohkamp, B. ;
Scott, W. G. ;
Cowtan, K. .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 2010, 66 :486-501