Combining WGCNA and machine learning to identify mechanisms and biomarkers of ischemic heart failure development after acute myocardial infarction

被引:3
作者
Li, Yan [1 ,2 ]
Hu, Ying [2 ]
Jiang, Feng [2 ]
Chen, Haoyu [2 ]
Xue, Yitao [2 ]
Yu, Yiding [1 ]
机构
[1] Shandong Univ Tradit Chinese Med, Jinan 250014, Peoples R China
[2] Shandong Univ Tradit Chinese Med, Affiliated Hosp, Jinan 250014, Peoples R China
基金
中国国家自然科学基金;
关键词
Ischemic heart failure; Acute myocardial infarction; Machine learning; Immune infiltration analysis; Bioinformatics; DOWN-REGULATION; IDENTIFICATION; EXPRESSION; INJURY; CARDIOMYOPATHY; INTERLEUKIN-1; IMPROVES; MODELS; GENES;
D O I
10.1016/j.heliyon.2024.e27165
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Ischemic heart failure (IHF) is a serious complication after acute myocardial infarction (AMI). Understanding the mechanism of IHF after AMI will help us conduct early diagnosis and treatment. Methods: We obtained the AMI dataset GSE66360 and the IHF dataset GSE57338 from the GEO database, and screened overlapping genes common to both diseases through WGCNA analysis. Subsequently, we performed GO and KEGG enrichment analysis on overlapping genes to elucidate the common mechanism of AMI and IHF. Machine learning algorithms are also used to identify key biomarkers. Finally, we performed immune cell infiltration analysis on the dataset to further evaluate immune cell changes in AMI and IHF. Results: We obtained 74 overlapping genes of AMI and IHF through WGCNA analysis, and the enrichment analysis results mainly focused on immune and inflammation-related mechanisms. Through the three machine learning algorithms of LASSO, RF and SVM-RFE, we finally obtained the four Hub genes of IL1B, TIMP2, IFIT3, and P2RY2, and verified them in the IHF dataset GSE116250, and the diagnostic model AUC = 0.907. The results of immune infiltration analysis showed that 8 types of immune cells were significantly different in AMI samples, and 6 types of immune cells were significantly different in IHF samples. Conclusion: We explored the mechanism of IHF after AMI by WGCNA, enrichment analysis, and immune infiltration analysis. Four potential diagnostic candidate genes and therapeutic targets were identified by machine learning algorithms. This provides a new idea for the pathogenesis, diagnosis, and treatment of IHF after AMI.
引用
收藏
页数:13
相关论文
共 67 条
[1]   Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease [J].
Abbate, Antonio ;
Toldo, Stefano ;
Marchetti, Carlo ;
Kron, Jordana ;
Van Tassell, Benjamin W. ;
Dinarello, Charles A. .
CIRCULATION RESEARCH, 2020, 126 (09) :1260-1280
[2]   ATP/UTP activate cation-permeable channels with TRPC3/7 properties in rat cardiomyocytes [J].
Alvarez, Julio ;
Coulombe, Alain ;
Cazorla, Olivier ;
Ugur, Mehmet ;
Rauzier, Jean-Michel ;
Magyar, Janos ;
Mathieu, Eve-Lyne ;
Boulay, Guylain ;
Souto, Rafael ;
Bideaux, Patrice ;
Salazar, Guillermo ;
Rassendren, Francois ;
Lacampagne, Alain ;
Fauconnier, Jeremy ;
Vassort, Guy .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2008, 295 (01) :H21-H28
[3]   Post-Myocardial Infarction Heart Failure [J].
Bahit, M. Cecilia ;
Kochar, Ajar ;
Granger, Christopher B. .
JACC-HEART FAILURE, 2018, 6 (03) :179-186
[4]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[5]  
Benjamin EJ., 2017, CIRCULATION, V135, pe146, DOI [DOI 10.1161/CIR.0000000000000491, 10.1161/cir.0000000000000485]
[6]   The Gene Ontology Resource: 20 years and still GOing strong [J].
Carbon, S. ;
Douglass, E. ;
Dunn, N. ;
Good, B. ;
Harris, N. L. ;
Lewis, S. E. ;
Mungall, C. J. ;
Basu, S. ;
Chisholm, R. L. ;
Dodson, R. J. ;
Hartline, E. ;
Fey, P. ;
Thomas, P. D. ;
Albou, L. P. ;
Ebert, D. ;
Kesling, M. J. ;
Mi, H. ;
Muruganujian, A. ;
Huang, X. ;
Poudel, S. ;
Mushayahama, T. ;
Hu, J. C. ;
LaBonte, S. A. ;
Siegele, D. A. ;
Antonazzo, G. ;
Attrill, H. ;
Brown, N. H. ;
Fexova, S. ;
Garapati, P. ;
Jones, T. E. M. ;
Marygold, S. J. ;
Millburn, G. H. ;
Rey, A. J. ;
Trovisco, V. ;
dos Santos, G. ;
Emmert, D. B. ;
Falls, K. ;
Zhou, P. ;
Goodman, J. L. ;
Strelets, V. B. ;
Thurmond, J. ;
Courtot, M. ;
Osumi-Sutherland, D. ;
Parkinson, H. ;
Roncaglia, P. ;
Acencio, M. L. ;
Kuiper, M. ;
Laegreid, A. ;
Logie, C. ;
Lovering, R. C. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D330-D338
[7]   Identified Three Interferon Induced Proteins as Novel Biomarkers of Human Ischemic Cardiomyopathy [J].
Chen, Cheng ;
Tian, Jiao ;
He, Zhicheng ;
Xiong, Wenyong ;
He, Yingying ;
Liu, Shubai .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (23)
[8]   Assessment and Treatment of Patients With Type 2 Myocardial Infarction and Acute Nonischemic Myocardial Injury [J].
DeFilippis, Andrew P. ;
Chapman, Andrew R. ;
Mills, Nicholas L. ;
de Lemos, James A. ;
Arbab-Zadeh, Armin ;
Newby, L. Kristin ;
Morrow, David A. .
CIRCULATION, 2019, 140 (20) :1661-1678
[9]   Matrix Metalloproteinases in Myocardial Infarction and Heart Failure [J].
DeLeon-Pennell, Kristine Y. ;
Meschiari, Cesar A. ;
Jung, Mira ;
Lindsey, Merry L. .
MATRIX METALLOPROTEINSES AND TISSUE REMODELING IN HEALTH AND DISEASE: CARDIOVASCULAR REMODELING, 2017, 147 :75-100
[10]   Predictors of incident heart failure in patients after an acute coronary syndrome: The LIPID heart failure risk-prediction model [J].
Driscoll, Andrea ;
Barnes, Elizabeth H. ;
Blankenberg, Stefan ;
Colquhoun, David M. ;
Hunt, David ;
Nestel, Paul J. ;
Stewart, Ralph A. ;
West, Malcolm J. ;
White, Harvey D. ;
Simes, John ;
Tonkin, Andrew .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2017, 248 :361-368