Prediction of Failure of Induction of Labor from Ultrasound Images Using Radiomic Features

被引:1
|
作者
Garcia Ocana, Maria Inmaculada [1 ,2 ]
Lopez-Linares Roman, Karen [1 ,2 ]
Burgos San Cristobal, Jorge [3 ]
del Campo Real, Ana [3 ]
Macia Oliver, Ivan [1 ,2 ]
机构
[1] Vicomtech, San Sebastian, Spain
[2] Biodonostia Hlth Res Inst, San Sebastian, Spain
[3] Univ Basque Country, Cruces Univ Hosp, Biocruces Bizkaia Hlth Res Inst, Obstet & Gynecol Serv, Baracaldo, Spain
来源
SMART ULTRASOUND IMAGING AND PERINATAL, PRETERM AND PAEDIATRIC IMAGE ANALYSIS, SUSI 2019, PIPPI 2019 | 2019年 / 11798卷
关键词
Radiomics; Ultrasound; Induction of labor; Machine learning;
D O I
10.1007/978-3-030-32875-7_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Induction of labor (IOL) is a very common procedure in current obstetrics; about 20% of women who undergo IOL at term pregnancy end up needing a cesarean section (C-section). The standard method to assess the risk of C-section, known as Bishop Score, is subjective and inconsistent. Thus, in this paper a novel method to predict the failure of IOL is presented, based on the analysis of B-mode transvaginal ultrasound (US) images. Advanced radiomic analyses from these images are combined with sonographic measurements (e.g. cervical length, cervical angle) and clinical data from a total of 182 patients to generate the predictive model. Different machine learning methods are compared, achieving a maximum AUC of 0.75, with 69% sensitivity and 71% specificity when using a Random Forest classifier. These preliminary results suggest that features obtained from US images can be used to estimate the risk of IOL failure, providing the practitioners with an objective method to choose the most personalized treatment for each patient.
引用
收藏
页码:153 / 160
页数:8
相关论文
共 50 条
  • [1] Prediction of ovarian cancer prognosis using statistical radiomic features of ultrasound images
    Zuo, Ruochen
    Li, Xiuru
    Hu, Jiaqi
    Wang, Wenqian
    Lu, Bingjian
    Zhang, Honghe
    Cheng, Xiaodong
    Lu, Weiguo
    Qin, Jiale
    Liu, Pengyuan
    Lu, Yan
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (12)
  • [2] The vague of ultrasound in the prediction of successful induction of labor
    Rane, SM
    Guirgis, RR
    Higgins, B
    Nicolaides, KH
    ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2004, 24 (05) : 538 - 549
  • [3] Prediction of Glioma Grade Using Intratumoral and Peritumoral Radiomic Features From Multiparametric MRI Images
    Cheng, Jianhong
    Liu, Jin
    Yue, Hailin
    Bai, Harrison
    Pan, Yi
    Wang, Jianxin
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (02) : 1084 - 1095
  • [4] Prediction of Prostate Cancer Grades Using Radiomic Features
    Yamamoto, Yasuhiro
    Haraguchi, Takafumi
    Matsuda, Kaori
    Okazaki, Yoshio
    Kimoto, Shin
    Tanji, Nozomu
    Matsumoto, Atsushi
    Kobayashi, Yasuyuki
    Mimura, Hidefumi
    Hiraki, Takao
    ACTA MEDICA OKAYAMA, 2025, 79 (01) : 21 - 30
  • [5] Classification of Molecular Subtypes of Breast Cancer Using Radiomic Features of Preoperative Ultrasound Images
    Zhang, Hongxia
    Wang, Leilei
    Lin, Yayun
    Ha, Xiaoming
    Huang, Chunyan
    Han, Chao
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2025,
  • [6] Placenta Accreta Spectrum and Hysterectomy Prediction Using MRI Radiomic Features
    Leitch, Ka'Toria
    Shahedi, Maysam
    Dormer, James D.
    Do, Quyen N.
    Xi, Yin
    Lewis, Matthew A.
    Herrera, Christina L.
    Spong, Catherine Y.
    Madhuranthakam, Ananth J.
    Twickler, Diane M.
    Fei, Baowei
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [7] Outcome Prediction for SARS-CoV-2 Patients Using Machine Learning Modeling of Clinical, Radiological, and Radiomic Features Derived from Chest CT Images
    Spagnoli, Lorenzo
    Morrone, Maria Francesca
    Giampieri, Enrico
    Paolani, Giulia
    Santoro, Miriam
    Curti, Nico
    Coppola, Francesca
    Ciccarese, Federica
    Vara, Giulio
    Brandi, Nicolo
    Golfieri, Rita
    Bartoletti, Michele
    Viale, Pierluigi
    Strigari, Lidia
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [8] An evaluation of cervical maturity for Chinese women with labor induction by machine learning and ultrasound images
    Liu, Yan-Song
    Lu, Shan
    Wang, Hong-Bo
    Hou, Zheng
    Zhang, Chun-Yu
    Chong, Yi-Wen
    Wang, Shuai
    Tang, Wen-Zhong
    Qu, Xiao-Lei
    Zhang, Yan
    BMC PREGNANCY AND CHILDBIRTH, 2023, 23 (01)
  • [9] An evaluation of cervical maturity for Chinese women with labor induction by machine learning and ultrasound images
    Yan-Song Liu
    Shan Lu
    Hong-Bo Wang
    Zheng Hou
    Chun-Yu Zhang
    Yi-Wen Chong
    Shuai Wang
    Wen-Zhong Tang
    Xiao-Lei Qu
    Yan Zhang
    BMC Pregnancy and Childbirth, 23
  • [10] A machine-learning algorithm for distinguishing malignant from benign indeterminate thyroid nodules using ultrasound radiomic features
    Keutgen, Xavier M.
    Li, Hui
    Memeh, Kelvin
    Conn Busch, Julian
    Williams, Jelani
    Lan, Li
    Sarne, David
    Finnerty, Brendan
    Angelos, Peter
    Fahey, Thomas J., III
    Giger, Maryellen L.
    JOURNAL OF MEDICAL IMAGING, 2022, 9 (03)