Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge

被引:0
|
作者
Munteanu, Valentin [1 ]
Starostin, Vladimir [1 ]
Greco, Alessandro [1 ]
Pithan, Linus [1 ,2 ]
Gerlach, Alexander [1 ]
Hinderhofer, Alexander [1 ]
Kowarik, Stefan [3 ]
Schreiber, Frank [1 ]
机构
[1] Univ Tubingen, Morgenstelle 10, D-72076 Tubingen, Germany
[2] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany
[3] Graz Univ, Dept Phys Chem, Heinrichstr 28, A-8010 Graz, Austria
来源
JOURNAL OF APPLIED CRYSTALLOGRAPHY | 2024年 / 57卷
关键词
reflectometry; machine learning; inverse problems; soft matter; POLARIZED NEUTRON; DENSITY PROFILES; REFLECTOMETRY; SCATTERING; SURFACES; LIQUID; ANGLE; MONOLAYERS; INTERFACE; EXAMPLES;
D O I
10.1107/S1600576724002115
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Due to the ambiguity related to the lack of phase information, determining the physical parameters of multilayer thin films from measured neutron and X-ray reflectivity curves is, on a fundamental level, an underdetermined inverse problem. This ambiguity poses limitations on standard neural networks, constraining the range and number of considered parameters in previous machine learning solutions. To overcome this challenge, a novel training procedure has been designed which incorporates dynamic prior boundaries for each physical parameter as additional inputs to the neural network. In this manner, the neural network can be trained simultaneously on all well-posed subintervals of a larger parameter space in which the inverse problem is underdetermined. During inference, users can flexibly input their own prior knowledge about the physical system to constrain the neural network prediction to distinct target subintervals in the parameter space. The effectiveness of the method is demonstrated in various scenarios, including multilayer structures with a box model parameterization and a physics-inspired special parameterization of the scattering length density profile for a multilayer structure. In contrast to previous methods, this approach scales favourably when increasing the complexity of the inverse problem, working properly even for a five-layer multilayer model and a periodic multilayer model with up to 17 open parameters.
引用
收藏
页码:456 / 469
页数:14
相关论文
共 50 条
  • [1] Neural network analysis of neutron and X-ray reflectivity data incorporating prior knowledge
    Munteanu, Valentin
    Starostin, Vladimir
    Greco, Alessandro
    Pithan, Linus
    Gerlach, Alexander
    Hinderhofer, Alexander
    Kowarik, Stefan
    Schreiber, Frank
    Journal of Applied Crystallography, 2024, 57 (Pt 2) : 456 - 469
  • [2] Neural network analysis of neutron and x-ray reflectivity data: Pathological cases, performance and perspectives
    Greco A.
    Starostin V.
    Hinderhofer A.
    Gerlach A.
    Skoda M.W.A.
    Kowarik S.
    Schreiber F.
    Machine Learning: Science and Technology, 2021, 2 (04):
  • [3] Neural network analysis of neutron and X-ray reflectivity data: automated analysis using mlreflect, experimental errors and feature engineering
    Greco, Alessandro
    Starostin, Vladimir
    Edel, Evelyn
    Munteanu, Valentin
    Russegger, Nadine
    Dax, Ingrid
    Shen, Chen
    Bertram, Florian
    Hinderhofer, Alexander
    Gerlach, Alexander
    Schreiber, Frank
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2022, 55 : 362 - 369
  • [4] Unbiased analysis of neutron and X-ray reflectivity data by an evolution strategy
    Politsch, E
    Cevc, G
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2002, 35 : 347 - 355
  • [5] ANALYSIS OF NEUTRON AND X-RAY REFLECTIVITY DATA .1. THEORY
    HAMLEY, IW
    PEDERSEN, JS
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1994, 27 (pt 1) : 29 - 35
  • [6] REFLEX: a program for the analysis of specular X-ray and neutron reflectivity data
    Vignaud, Guillaume
    Gibaud, Alain
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2019, 52 : 201 - 213
  • [7] X-ray and neutron reflectivity
    Tolan, M
    Press, W
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1998, 213 (06): : 319 - 336
  • [8] A comparison of modern data analysis methods for X-ray and neutron specular reflectivity data
    van der Lee, A.
    Salah, F.
    Harzallah, B.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2007, 40 : 820 - 833
  • [9] Critical comparison of recent analysis methods of X-ray and neutron reflectivity data
    van der Lee, A
    JOURNAL DE PHYSIQUE IV, 2002, 12 (PR6): : 255 - 263
  • [10] ANALYSIS OF NEUTRON AND X-RAY REFLECTIVITY DATA BY CONSTRAINED LEAST-SQUARES METHODS
    PEDERSEN, JS
    HAMLEY, IW
    PHYSICA B, 1994, 198 (1-3): : 16 - 23