Quality Inference in Federated Learning with Secure Aggregation

被引:6
|
作者
Pejó B. [1 ,2 ]
Biczók G. [1 ,2 ]
机构
[1] Budapest University of Technology and Economics, CrySyS Lab, Department of Networked Systems and Services, Faculty of Electrical Engineering and Informatics, Budapest
[2] ELKH-BME Information Systems Research Group, Budapest
来源
IEEE Transactions on Big Data | 2023年 / 9卷 / 05期
关键词
contribution score; federated learning; misbehavior detection; Quality inference; secure aggregation;
D O I
10.1109/TBDATA.2023.3280406
中图分类号
学科分类号
摘要
Federated learning algorithms are developed both for efficiency reasons and to ensure the privacy and confidentiality of personal and business data, respectively. Despite no data being shared explicitly, recent studies showed that the mechanism could still leak sensitive information. Hence, secure aggregation is utilized in many real-world scenarios to prevent attribution to specific participants. In this paper, we focus on the quality (i.e., the ratio of correct labels) of individual training datasets and show that such quality information could be inferred and attributed to specific participants even when secure aggregation is applied. Specifically, through a series of image recognition experiments, we infer the relative quality ordering of participants. Moreover, we apply the inferred quality information to stabilize training performance, measure the individual contribution of participants, and detect misbehavior. © 2015 IEEE.
引用
收藏
页码:1430 / 1437
页数:7
相关论文
共 50 条
  • [1] Secure Aggregation is Insecure: Category Inference Attack on Federated Learning
    Gao, Jiqiang
    Hou, Boyu
    Guo, Xiaojie
    Liu, Zheli
    Zhang, Ying
    Chen, Kai
    Li, Jin
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (01) : 147 - 160
  • [2] Client-specific Property Inference against Secure Aggregation in Federated Learning
    Kerkouche, Raouf
    Acs, Gergely
    Fritz, Mario
    PROCEEDINGS OF THE 22ND WORKSHOP ON PRIVACY IN THE ELECTRONIC SOCIETY, WPES 2023, 2023, : 44 - 59
  • [3] Verifiable and Secure Aggregation Scheme for Federated Learning
    Ren Y.
    Fu Y.
    Li Y.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2023, 46 (03): : 49 - 55
  • [4] SAFELearn: Secure Aggregation for private FEderated Learning
    Fereidooni, Hossein
    Marchal, Samuel
    Miettinen, Markus
    Mirhoseini, Azalia
    Moellering, Helen
    Thien Duc Nguyen
    Rieger, Phillip
    Sadeghi, Ahmad-Reza
    Schneider, Thomas
    Yalame, Hossein
    Zeitouni, Shaza
    2021 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2021), 2021, : 56 - 62
  • [5] HeteroSAg: Secure Aggregation With Heterogeneous Quantization in Federated Learning
    Elkordy, Ahmed Roushdy
    Avestimehr, A. Salman
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (04) : 2372 - 2386
  • [6] Straggler-Resilient Secure Aggregation for Federated Learning
    Schlegel, Reent
    Kumar, Siddhartha
    Rosnes, Eirik
    Graell i Amat, Alexandre
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 712 - 716
  • [7] SVFLC: Secure and Verifiable Federated Learning With Chain Aggregation
    Li, Ning
    Zhou, Ming
    Yu, Haiyang
    Chen, Yuwen
    Yang, Zhen
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (08): : 13125 - 13136
  • [8] BalancedSecAgg: Toward Fast Secure Aggregation for Federated Learning
    Masuda, Hiroki
    Kita, Kentaro
    Koizumi, Yuki
    Takemasa, Junji
    Hasegawa, Toru
    IEEE ACCESS, 2024, 12 : 165265 - 165279
  • [9] Device Scheduling for Secure Aggregation in Wireless Federated Learning
    Yan, Na
    Wang, Kezhi
    Zhi, Kangda
    Pan, Cunhua
    Poor, H. Vincent
    Chai, Kok Keong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (17): : 28851 - 28862
  • [10] Robust Secure Aggregation with Lightweight Verification for Federated Learning
    Huang, Chao
    Yao, Yanqing
    Zhang, Xiaojun
    Teng, Da
    Wang, Yingdong
    Zhou, Lei
    2022 IEEE INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS, TRUSTCOM, 2022, : 582 - 589