Antibacterial properties of starch-reduced graphene oxide-polyiodide nanocomposite

被引:35
作者
Narayanan, Kannan Badri [1 ]
Park, Gyu Tae [1 ]
Han, Sung Soo [1 ]
机构
[1] Yeungnam Univ, Sch Chem Engn, 280 Daehak Ro, Gyongsan 38541, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Reduced graphene oxide; Soluble starch; Polyiodide; Nanocomposite; Antibacterial; Food packaging;
D O I
10.1016/j.foodchem.2020.128385
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Graphene-based nanocomposites with superior antibacterial activity are highly sought after by the food packaging industries. Here, we report for the first time a method that utilizes soluble starch biopolymer as a functionalizing and reducing agent for the preparation of starch-reduced graphene oxide (SRGO), whereby polyiodide binds to the helical structures of amylose units of the starch (chromophore) to form a SRGO-polyiodide nanocomposite (SRGO-PI NC). UV-visible spectroscopy, X-ray diffraction, Raman spectroscopy, scanning electron microscopy, and energy-dispersive spectroscopy confirmed the presence of polyiodide in SRGO. SRGO-PI NC exhibited good antibacterial activities against pathogenic Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) microbes with minimum inhibitory concentrations (MICs) and minimum bactericidal concentration (MBC) values (as determined by a broth-dilution method) of 2.5 and 5 mg/ml, respectively, for both E. coli and S. aureus. PrestoBlue viability assays showed half-maximal inhibitory concentration (IC50) values of 0.45 and 0.41 mg/ml for E. coli and S. aureus, respectively. Time-kill kinetic and live/dead bacterial viability assays revealed the antimicrobial activities of SRGO-PI NC against both E. coli and S. aureus. The study provides new insights regarding the utilization of graphene-polyiodide NCs as high-efficacy antibacterial starch-based nanomaterials for food packaging applications.
引用
收藏
页数:7
相关论文
共 31 条
  • [1] [Anonymous], 2015, Clinical Laboratory Standards Institute (CLSI), V35
  • [2] UV resistant transparent bionanocomposite films based on potato starch/cellulose for sustainable packaging
    Balakrishnan, Preetha
    Gopi, Sreerag
    Sreekala, M. S.
    Thomas, Sabu
    [J]. STARCH-STARKE, 2018, 70 (1-2):
  • [3] Molecular iodine preconcentration and determination in aqueous samples using poly(vinylpyrrolidone) containing membranes
    Bhagat, P. R.
    Pandey, A. K.
    Acharya, R.
    Nair, A. G. C.
    Rajurkar, N. S.
    Reddy, A. V. R.
    [J]. TALANTA, 2008, 74 (05) : 1313 - 1320
  • [4] Defect characterization in graphene and carbon nanotubes using Raman spectroscopy
    Dresselhaus, M. S.
    Jorio, A.
    Souza Filho, A. G.
    Saito, R.
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1932): : 5355 - 5377
  • [5] Graphene: Status and Prospects
    Geim, A. K.
    [J]. SCIENCE, 2009, 324 (5934) : 1530 - 1534
  • [6] Ghosh TK., 2019, Nano-Struct Nano-Objects, V19, P100362, DOI [10.1016/J.NANOSO.2019.100362, DOI 10.1016/J.NANOSO.2019.100362, 10.1016/j.nanoso.2019.100362]
  • [7] Impacts on antibiotic-resistant bacteria and their horizontal gene transfer by graphene-based TiO2&Ag composite photocatalysts under solar irradiation
    Guo, Mei-Ting
    Tian, Xiao-Bo
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2019, 380
  • [8] Graphene-Based Antibacterial Paper
    Hu, Wenbing
    Peng, Cheng
    Luo, Weijie
    Lv, Min
    Li, Xiaoming
    Li, Di
    Huang, Qing
    Fan, Chunhai
    [J]. ACS NANO, 2010, 4 (07) : 4317 - 4323
  • [9] PREPARATION OF GRAPHITIC OXIDE
    HUMMERS, WS
    OFFEMAN, RE
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1958, 80 (06) : 1339 - 1339
  • [10] Iodine doping in solid precursor-based CVD growth graphene film
    Kalita, Golap
    Wakita, Koichi
    Takahashi, Makoto
    Umeno, Masayoshi
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (39) : 15209 - 15213