Gradient Flow Exact Renormalization Group for Scalar Quantum Electrodynamics

被引:1
作者
Haruna, Junichi [1 ]
Yamada, Masatoshi [2 ,3 ]
机构
[1] Osaka Univ, Ctr Quantum Informat & Quantum Biol, Toyonaka, Osaka 5600043, Japan
[2] Jilin Univ, Ctr Theoret Phys, Changchun 130012, Peoples R China
[3] Jilin Univ, Coll Phys, Changchun 130012, Peoples R China
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2024年 / 05期
基金
美国国家科学基金会;
关键词
BRST Quantization; Gauge Symmetry; Nonperturbative Effects; Renormalization Group; EQUATION;
D O I
10.1007/JHEP05(2024)291
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Gradient Flow Exact Renormalization Group (GF-ERG) is a framework to define the renormalization group flow of Wilsonian effective action utilizing coarse-graining along the diffusion equations. We apply it for Scalar Quantum Electrodynamics and derive flow equations for the Wilsonian effective action with the perturbative expansion in the gauge coupling. We focus on the quantum corrections to the correlation functions up to the second order of the gauge coupling and discuss the gauge invariance of the GF-ERG flow. We demonstrate that the anomalous dimension of the gauge field agrees with the standard perturbative computation and that the mass of the photon keeps vanishing in general spacetime dimensions. The latter is a noteworthy fact that contrasts with the conventional Exact Renormalization Group formalism in which an artificial photon mass proportional to a cutoff scale is induced. Our results imply that the GF-ERG can give a gauge-invariant renormalization group flow in a non-perturbative way.
引用
收藏
页数:28
相关论文
共 40 条
[1]   Fixed point structure of the gradient flow exact renormalization group for scalar field theories [J].
Abe, Yoshihiko ;
Hamada, Yu ;
Haruna, Junichi .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2022, 2022 (03)
[2]   Introduction to the non-perturbative renormalization group and its recent applications [J].
Aoki, KI .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2000, 14 (12-13) :1249-1326
[3]  
Arnone S, 2005, J HIGH ENERGY PHYS
[4]   BRST-invariant RG flows [J].
Asnafi, Shimasadat ;
Gies, Holger ;
Zambelli, Luca .
PHYSICAL REVIEW D, 2019, 99 (08)
[5]   Exact renormalization group equations: an introductory review [J].
Bagnuls, C ;
Bervillier, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2001, 348 (1-2) :91-157
[6]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386
[7]   Fermion interactions and universal behavior in strongly interacting theories [J].
Braun, Jens .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2012, 39 (03)
[8]  
Delamotte B, 2012, LECT NOTES PHYS, V852, P49, DOI 10.1007/978-3-642-27320-9_2
[9]   The nonperturbative functional renormalization group and its applications [J].
Dupuis, N. ;
Canet, L. ;
Eichhorn, A. ;
Metzner, W. ;
Pawlowski, J. M. ;
Tissier, M. ;
Wschebor, N. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2021, 910 :1-114
[10]   Wilson action for the O (N) model [J].
Dutta, S. ;
Sathiapalan, B. ;
Sonoda, H. .
NUCLEAR PHYSICS B, 2020, 956