Niobium doped TiO2 nanorod arrays as efficient electron transport materials in photovoltaic

被引:0
作者
Zhong P. [1 ,2 ]
Chen X. [1 ]
Niu B. [1 ]
Li C. [1 ]
Wang Y. [4 ]
Xi H. [1 ,2 ]
Lei Y. [1 ,2 ]
Wang Z. [1 ]
Ma X. [2 ,3 ]
机构
[1] School of Advanced Materials and Nanotechnology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an, 710126, Shaanxi
[2] Key Lab of Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi'an, 710071, Shaanxi
[3] School of Microelectronics, Xidian University, Xi'an, 710071, Shaanxi
[4] School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, 710071, Shaanxi
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Charge transport; Dye-sensitized solar cell; Niobium doping; Perovskite solar cell; Recombination; TiO[!sub]2[!/sub] nanorod array;
D O I
10.1016/j.jpowsour.2020.227715
中图分类号
学科分类号
摘要
One-dimensional (1-D) rutile TiO2 nanorod arrays (NRAs) synthesized by a hydrothermal method suffer from low electrical conductivity and large amounts of surface defects, hindering their further applications. Nb doping is thus introduced to modify their electronic properties. Results indicate that light Nb doping reduces rod nanosizes, increases electron concentrations, decreases surface defective oxides and lowers conduction band of the TiO2 NRAs, while heavy doping induces transformations of morphologies and crystalline orientations as well as occurrences of compositional deviations and low oxidative states of Ti3+. After 0.1 mol% and 1 mol% Nb incorporations, device efficiencies are substantially improved by ~16% and ~33% for the model perovskite and dye-sensitized solar cells, respectively, which are ascribed to reduced recombination at the perovskite/TiO2 interfaces (e.g. charge lifetime increasing from 62 μs to 107 μs) and improved electron transport through the photoanode of TiO2 NRAs (e.g. electron diffusion length increasing from ~14 μm to ~50 μm). Our study verifies that Nb doped 1-D TiO2 NRAs are versatile electron transporting materials in different kinds of emerging solar cells, and are also potential for other fields including photocatalysis, sensors and batteries etc. © 2020 Elsevier B.V.
引用
收藏
相关论文
共 67 条
[1]  
Lewis N.S., Nocera D.G., Proc. Natl. Acad. Sci. U.S.A., 103, pp. 15729-15735, (2006)
[2]  
Shah A., Torres P., Tscharner R., Wyrsch N., Keppner H., Science, 285, pp. 692-698, (1999)
[3]  
Yoshikawa K., Kawasaki H., Yoshida W., Irie T., Konishi K., Nakano K., Uto T., Adachi D., Kanematsu M., Uzu H., Yamamoto K., Nat. Energy, 2, (2017)
[4]  
Jeon N.J., Noh J.H., Kim Y.C., Yang W.S., Ryu S., Seok S.I., Nat. Mater., 13, pp. 897-903, (2014)
[5]  
Zhou H., Chen Q., Li G., Luo S., Song T.-B., Duan H.-S., Hong Z., You J., Liu Y., Yang Y., Science, 345, pp. 542-546, (2014)
[6]  
Liu M., Johnston M.B., Snaith H.J., Nature, 501, pp. 395-39+, (2013)
[7]  
Bi D., Xu B., Gao P., Sun L., Graetzel M., Hagfeldt A., Nano Energy, 23, pp. 138-144, (2016)
[8]  
Kim M., Kim G.-H., Lee T.K., Choi I.W., Choi H.W., Jo Y., Yoon Y.J., Kim J.W., Lee J., Huh D., Lee H., Kwak S.K., Kim J.Y., Kim D.S.
[9]  
Bach U., Lupo D., Comte P., Moser J.E., Weissortel F., Salbeck J., Spreitzer H., Gratzel M., Nature, 395, pp. 583-585, (1998)
[10]  
Mathew S., Yella A., Gao P., Humphry-Baker R., Curchod B.F.E., Ashari-Astani N., Tavernelli I., Rothlisberger U., Nazeeruddin M.K., Graetzel M., Nat. Chem., 6, pp. 242-247, (2014)