Learning-based Optimal Control for Linear Systems with Model Uncertainties

被引:0
作者
Wang, Zitong [1 ]
Ding, Xuda
Duan, Xiaoming
He, Jianping
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Shanghai 200240, Peoples R China
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
基金
中国国家自然科学基金;
关键词
system identification; linear systems; unknown systems; LQG control;
D O I
10.1016/j.ifacol.2023.10.1381
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of optimal control with unknown dynamics is important and challenging. Most existing learning-based methods usually do not utilize the prior knowledge of the model and choose to learn the system model from scratch, leading to high identification costs and unbounded identification time. In practice, prior knowledge of the model may be available. Therefore, in this paper, we investigate the Linear Quadratic Gaussian ( LQG) control problem for an unknown system but with prior knowledge of model uncertainties. We develop an effective learning procedure to identify the optimal controller parameters, leading to the least possible cost. Specifically, we analyze the performance of the optimal observer under unknown system dynamics and reveal the relationship between the regression error and the observer performance. We propose a learning procedure to design the optimal controller incorporating prior knowledge of the system. Simulations are conducted to illustrate the effectiveness of our controller design.
引用
收藏
页码:4006 / 4012
页数:7
相关论文
共 19 条
[1]  
[Anonymous], 1979, Optimal Filtering
[2]  
Berberich J., 2022, IEEE Transactions on Automatic Control
[3]   On the Sample Complexity of the Linear Quadratic Regulator [J].
Dean, Sarah ;
Mania, Horia ;
Matni, Nikolai ;
Recht, Benjamin ;
Tu, Stephen .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2020, 20 (04) :633-679
[4]  
Ding XD, 2021, P AMER CONTR CONF, P4007, DOI 10.23919/ACC50511.2021.9482693
[5]   An Input-Output Parametrization of Stabilizing Controllers: Amidst Youla and System Level Synthesis [J].
Furieri, Luca ;
Zheng, Yang ;
Papachristodoulou, Antonis ;
Kamgarpour, Maryam .
IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (04) :1014-1019
[6]   Data-Driven Adaptive LQR for Completely Unknown LTI Systems [J].
Jha, Sumit Kumar ;
Roy, Sayan Basu ;
Bhasin, Shubhendu .
IFAC PAPERSONLINE, 2017, 50 (01) :4156-4161
[7]  
Li YS, 2022, Arxiv, DOI arXiv:2106.01031
[8]  
Lu J., 2014, INT C INF FUS
[9]  
Lu YW, 2021, Arxiv, DOI arXiv:2103.13278
[10]   Revisiting Ho-Kalman-Based System Identification: Robustness and Finite-Sample Analysis [J].
Oymak, Samet ;
Ozay, Necmiye .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (04) :1914-1928