A critical review of operating stability issues in electrochemical CO2 reduction

被引:17
作者
Duanmu, Jing-Wen [1 ]
Gao, Fei-Yue [1 ]
Gao, Min-Rui [1 ]
机构
[1] Univ Sci & Technol China, Dept Chem, Div Nanomat & Chem, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CO2; reduction; stability; catalyst; gas diffusion layer; electrolyte; GAS-DIFFUSION ELECTRODE; CARBON-DIOXIDE; ELECTROCATALYTIC CONVERSION; COPPER ELECTRODES; OXIDATION-STATE; ELECTROREDUCTION; DEPOSITION; CATALYST; RECONSTRUCTION; MECHANISMS;
D O I
10.1007/s40843-024-2835-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrocatalytic carbon dioxide reduction reaction (CO2RR) offers a promising solution for mitigating environmental challenges by converting CO2 into value-added chemicals and fuels. However, the long-term stability of CO2RR systems remains a major bottleneck impeding large-scale commercial implementation. This review summarizes recent progress on elucidating the root causes underlying stability declines in CO2RR and strategies to address them. First, catalysts undergo structural transformations (e.g., reconstruction, aggregation, dissolution) under applied reduction potentials, decreasing the density of active sites. Catalyst poisoning via carbon deposition or feed impurities (e.g., SO2) also reduces site availability. Second, gas diffusion layer (GDL) flooding and salt precipitation hinder reactant/product transport and destroy catalyst-electrolyte-gas three-phase interfaces. High applied pressures induce GDL cracking over prolonged operation. Third, alkaline electrolytes neutralize with CO2 and precipitate carbonate salts, while acidic media corrode catalysts and favor competing hydrogen evolution reaction. Metal ion impurities deposit on catalyst surfaces further exacerbating decays. Rational catalyst and GDL design can construct stabilized microenvironments, though additional advances in materials properties, operating conditions, and impurity removal are essential to extend CO2RR lifetime for commercial needs (>50,000 h). Understanding cross-coupling between the diverse deteriorative phenomena will advance the development of this important frontier.
引用
收藏
页码:1721 / 1739
页数:19
相关论文
共 128 条
[1]   Operando Electrochemical Spectroscopy for CO on Cu(100) at pH 1 to 13: Validation of Grand Canonical Potential Predictions [J].
Baricuatro, Jack H. ;
Kwon, Soonho ;
Kim, Youn-Geun ;
Cummins, Kyle D. ;
Naserifar, Saber ;
Goddard, William A., III .
ACS CATALYSIS, 2021, 11 (05) :3173-3181
[2]   Bioinspired and Bioderived Aqueous Electrocatalysis [J].
Barrio, Jesus ;
Pedersen, Angus ;
Favero, Silvia ;
Luo, Hui ;
Wang, Mengnan ;
Sarma, Saurav Ch. ;
Feng, Jingyu ;
Ngoc, Linh Tran Thi ;
Kellner, Simon ;
Li, Alain You ;
Sobrido, Ana Belen Jorge ;
Titirici, Maria-Magdalena .
CHEMICAL REVIEWS, 2022, 123 (05) :2311-2348
[3]   Construction of 3D copper-chitosan-gas diffusion layer electrode for highly efficient CO2 electrolysis to C2+ alcohols [J].
Bi, Jiahui ;
Li, Pengsong ;
Liu, Jiyuan ;
Jia, Shuaiqiang ;
Wang, Yong ;
Zhu, Qinggong ;
Liu, Zhimin ;
Han, Buxing .
NATURE COMMUNICATIONS, 2023, 14 (01)
[4]   Investigating the electrowetting of silver-based gas-diffusion electrodes during oxygen reduction reaction with electrochemical and optical methods [J].
Bienen, Fabian ;
Paulisch, Melanie C. ;
Mager, Thorben ;
Osiewacz, Jens ;
Nazari, Manigah ;
Osenberg, Markus ;
Ellendorff, Barbara ;
Turek, Thomas ;
Nieken, Ulrich ;
Manke, Ingo ;
Friedrich, K. Andreas .
ELECTROCHEMICAL SCIENCE ADVANCES, 2023, 3 (01)
[5]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[6]   CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions [J].
Burdyny, Thomas ;
Smith, Wilson A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (05) :1442-1453
[7]   Cell-free chemoenzymatic starch synthesis from carbon dioxide [J].
Cai, Tao ;
Sun, Hongbing ;
Qiao, Jing ;
Zhu, Leilei ;
Zhang, Fan ;
Zhang, Jie ;
Tang, Zijing ;
Wei, Xinlei ;
Yang, Jiangang ;
Yuan, Qianqian ;
Wang, Wangyin ;
Yang, Xue ;
Chu, Huanyu ;
Wang, Qian ;
You, Chun ;
Ma, Hongwu ;
Sun, Yuanxia ;
Li, Yin ;
Li, Can ;
Jiang, Huifeng ;
Wang, Qinhong ;
Ma, Yanhe .
SCIENCE, 2021, 373 (6562) :1523-+
[8]   Surface hydroxide promotes CO2 electrolysis to ethylene in acidic conditions [J].
Cao, Yufei ;
Chen, Zhu ;
Li, Peihao ;
Ozden, Adnan ;
Ou, Pengfei ;
Ni, Weiyan ;
Abed, Jehad ;
Shirzadi, Erfan ;
Zhang, Jinqiang ;
Sinton, David ;
Ge, Jun ;
Sargent, Edward H. H. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[9]   Address the "alkalinity problem'' in CO2 electrolysis with catalyst design and translation [J].
Chen, Chubai ;
Li, Yifan ;
Yang, Peidong .
JOULE, 2021, 5 (04) :737-742
[10]   Electrocatalytic CO2 Reduction to C2+ Products in Flow Cells [J].
Chen, Qin ;
Wang, Xiqing ;
Zhou, Yajiao ;
Tan, Yao ;
Li, Hongmei ;
Fu, Junwei ;
Liu, Min .
ADVANCED MATERIALS, 2024, 36 (05)