Head movement dynamics in dystonia: a multi-centre retrospective study using visual perceptive deep learning

被引:1
作者
Peach, Robert [1 ,2 ]
Friedrich, Maximilian [1 ,3 ,4 ]
Fronemann, Lara [1 ]
Muthuraman, Muthuraman [1 ]
Schreglmann, Sebastian R. [1 ]
Zeller, Daniel [1 ]
Schrader, Christoph [5 ]
Krauss, Joachim K. [6 ]
Schnitzler, Alfons [7 ]
Wittstock, Matthias [8 ]
Helmers, Ann-Kristin [9 ]
Paschen, Steffen [10 ]
Kuehn, Andrea [11 ]
Skogseid, Inger Marie [12 ]
Eisner, Wilhelm [13 ]
Mueller, Joerg [14 ]
Matthies, Cordula [1 ]
Reich, Martin [1 ]
Volkmann, Jens [1 ]
Ip, Chi Wang [1 ]
机构
[1] Univ Hosp Wurzburg, Dept Neurol, D-97080 Wurzburg, Germany
[2] Imperial Coll London, Dept Brain Sci, London, England
[3] Brigham & Womens Hosp, Ctr Brain Circuit Therapeut, Boston, MA USA
[4] Harvard Med Sch, Boston, MA USA
[5] Hannover Med Sch, Dept Neurol & Clin Neurophysiol, Hannover, Germany
[6] Hannover Med Sch, Dept Neurosurg, Hannover, Germany
[7] Heinrich Heine Univ Dusseldorf, Inst Clin Neurosci & Med Psychol, Dusseldorf, Germany
[8] Univ Hosp Rostock, Dept Neurol, Rostock, Germany
[9] Univ Kiel, Dept Neurol, UKSH, Kiel Campus, Kiel, Germany
[10] Univ Kiel, Dept Neurol, Kiel, Germany
[11] Charite, Dept Neurol, Movement Disorder & Neuromodulat Unit, Berlin, Germany
[12] Oslo Univ Hosp, Dept Neurol, Movement Disorders Unit, Rikshospitalet, Oslo, Norway
[13] Innsbruck Med Univ, Dept Neurol, A-6020 Innsbruck, Austria
[14] Vivantes Klinikum Spandau, Klin Neurol & Stroke Unit, Berlin, Germany
来源
NPJ DIGITAL MEDICINE | 2024年 / 7卷 / 01期
关键词
CERVICAL DYSTONIA; BRAIN-STIMULATION; RATING-SCALES; RELIABILITY;
D O I
10.1038/s41746-024-01140-6
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Dystonia is a neurological movement disorder characterised by abnormal involuntary movements and postures, particularly affecting the head and neck. However, current clinical assessment methods for dystonia rely on simplified rating scales which lack the ability to capture the intricate spatiotemporal features of dystonic phenomena, hindering clinical management and limiting understanding of the underlying neurobiology. To address this, we developed a visual perceptive deep learning framework that utilizes standard clinical videos to comprehensively evaluate and quantify disease states and the impact of therapeutic interventions, specifically deep brain stimulation. This framework overcomes the limitations of traditional rating scales and offers an efficient and accurate method that is rater-independent for evaluating and monitoring dystonia patients. To evaluate the framework, we leveraged semi-standardized clinical video data collected in three retrospective, longitudinal cohort studies across seven academic centres. We extracted static head angle excursions for clinical validation and derived kinematic variables reflecting naturalistic head dynamics to predict dystonia severity, subtype, and neuromodulation effects. The framework was also applied to a fully independent cohort of generalised dystonia patients for comparison between dystonia sub-types. Computer vision-derived measurements of head angle excursions showed a strong correlation with clinically assigned scores. Across comparisons, we identified consistent kinematic features from full video assessments encoding information critical to disease severity, subtype, and effects of neural circuit interventions, independent of static head angle deviations used in scoring. Our visual perceptive machine learning framework reveals kinematic pathosignatures of dystonia, potentially augmenting clinical management, facilitating scientific translation, and informing personalized precision neurology approaches.
引用
收藏
页数:11
相关论文
共 61 条
  • [11] Comella C., 2015, NEUROLOGY, V84
  • [12] Rating scales for dystonia: A multicenter assessment
    Comella, CL
    Leurgans, S
    Wuu, J
    Stebbins, GT
    Chmura, T
    [J]. MOVEMENT DISORDERS, 2003, 18 (03) : 303 - 312
  • [13] Teaching tape for the motor section of the Toronto western spasmodic torticollis scale
    Comella, CL
    Stebbins, GT
    Goetz, CG
    Chmura, TA
    Bressman, SB
    Lang, AE
    [J]. MOVEMENT DISORDERS, 1997, 12 (04) : 570 - 575
  • [14] Clinimetric testing of the comprehensive cervical dystonia rating scale
    Comella, Cynthia L.
    Perlmutter, Joel S.
    Jinnah, Hyder A.
    Waliczek, Tracy A.
    Rosen, Ami R.
    Galpern, Wendy R.
    Adler, Charles A.
    Barbano, Richard L.
    Factor, Stewart A.
    Goetz, Christopher G.
    Jankovic, Joseph
    Reich, Stephen G.
    Rodriguez, Ramon L.
    Severt, William L.
    Zurowski, Mateusz
    Fox, Susan H.
    Stebbins, Glenn T.
    [J]. MOVEMENT DISORDERS, 2016, 31 (04) : 563 - 569
  • [15] Unmet Needs in the Management of Cervical Dystonia
    Contarino, Maria Fiorella
    Smit, Marenka
    van den Dool, Joost
    Volkmann, Jens
    Tijssen, Marina A. J.
    [J]. FRONTIERS IN NEUROLOGY, 2016, 7
  • [16] An Entropy-Based Model for Basal Ganglia Dysfunctions in Movement Disorders
    Darbin, Olivier
    Dees, Daniel
    Martino, Anthony
    Adams, Elizabeth
    Naritoku, Dean
    [J]. BIOMED RESEARCH INTERNATIONAL, 2013, 2013
  • [17] Machine Learning in Tremor Analysis: Critique and Directions
    De, Anwesan
    Bhatia, Kailash P.
    Volkmann, Jens
    Peach, Robert
    Schreglmann, Sebastian R.
    [J]. MOVEMENT DISORDERS, 2023, 38 (05) : 717 - 731
  • [18] Deep learning-enabled medical computer vision
    Esteva, Andre
    Chou, Katherine
    Yeung, Serena
    Naik, Nikhil
    Madani, Ali
    Mottaghi, Ali
    Liu, Yun
    Topol, Eric
    Dean, Jeff
    Socher, Richard
    [J]. NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [19] A primer on entropy in neuroscience
    Fagerholm, Erik D.
    Dezhina, Zalina
    Moran, Rosalyn J.
    Turkheimer, Federico E.
    Leech, Robert
    [J]. NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2023, 146
  • [20] Smartphone video nystagmography using convolutional neural networks: ConVNG
    Friedrich, Maximilian U.
    Schneider, Erich
    Buerklein, Miriam
    Taeger, Johannes
    Hartig, Johannes
    Volkmann, Jens
    Peach, Robert
    Zeller, Daniel
    [J]. JOURNAL OF NEUROLOGY, 2023, 270 (05) : 2518 - 2530