KNOW How to Make Up Your Mind! Adversarially Detecting and Alleviating Inconsistencies in Natural Language Explanations

被引:0
作者
Jang, Myeongjun [1 ]
Majumder, Bodhisattwa Prasad [3 ]
McAuley, Julian [3 ]
Lukasiewicz, Thomas [1 ,2 ]
Camburu, Oana-Maria [4 ]
机构
[1] Univ Oxford, Oxford, England
[2] Vienna Univ Technol, Vienna, Austria
[3] Univ Calif San Diego, La Jolla, CA USA
[4] UCL, London, England
来源
61ST CONFERENCE OF THE THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 2 | 2023年
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While recent works have been considerably improving the quality of the natural language explanations (NLEs) generated by a model to justify its predictions, there is very limited research in detecting and alleviating inconsistencies among generated NLEs. In this work, we leverage external knowledge bases to significantly improve on an existing adversarial attack for detecting inconsistent NLEs. We apply our attack to high-performing NLE models and show that models with higher NLE quality do not necessarily generate fewer inconsistencies. Moreover, we propose an offthe-shelf mitigation method to alleviate inconsistencies by grounding the model into external background knowledge. Our method decreases the inconsistencies of previous high-performing NLE models as detected by our attack.
引用
收藏
页码:540 / 553
页数:14
相关论文
共 36 条
  • [1] Atanasova Pepa, 2023, ACL
  • [2] Banerjee Satanjeev, 2005, P ACL WORKSH INTR EX, P65
  • [3] Bowman S.R., 2015, P 2015 C EMPIRICAL M, P632, DOI [10.18653/v1/D15-1075, DOI 10.18653/V1]
  • [4] Camburu OM, 2020, 58TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2020), P4157
  • [5] Camburu OM, 2018, ADV NEUR IN, V31
  • [6] Elazar Y, 2021, Arxiv, DOI arXiv:2102.01017
  • [7] Women Also Snowboard: Overcoming Bias in Captioning Models
    Hendricks, Lisa Anne
    Burns, Kaylee
    Saenko, Kate
    Darrell, Trevor
    Rohrbach, Anna
    [J]. COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 : 793 - 811
  • [8] Explaining Chest X-Ray Pathologies in Natural Language
    Kayser, Maxime
    Emde, Cornelius
    Camburu, Oana-Maria
    Parsons, Guy
    Papiez, Bartlomiej
    Lukasiewicz, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 : 701 - 713
  • [9] e-ViL: A Dataset and Benchmark for Natural Language Explanations in Vision-Language Tasks
    Kayser, Maxime
    Camburu, Oana-Maria
    Salewski, Leonard
    Emde, Cornelius
    Do, Virginie
    Akata, Zeynep
    Lukasiewicz, Thomas
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 1224 - 1234
  • [10] Textual Explanations for Self-Driving Vehicles
    Kim, Jinkyu
    Rohrbach, Anna
    Darrell, Trevor
    Canny, John
    Akata, Zeynep
    [J]. COMPUTER VISION - ECCV 2018, PT II, 2018, 11206 : 577 - 593