Orchestrating explainable artificial intelligence for multimodal and longitudinal data in medical imaging

被引:12
作者
de Mortanges, Aurelie Pahud [1 ]
Luo, Haozhe [1 ]
Shu, Shelley Zixin [1 ]
Kamath, Amith [1 ]
Suter, Yannick [1 ,2 ]
Shelan, Mohamed [2 ]
Pollinger, Alexander [3 ]
Reyes, Mauricio [1 ,2 ]
机构
[1] Univ Bern, ARTORG Ctr Biomed Engn Res, Bern, Switzerland
[2] Univ Bern, Bern Univ Hosp, Dept Radiat Oncol, Inselspital, Bern, Switzerland
[3] Bern Univ Hosp, Dept Diagnost Intervent & Pediat Radiol, Inselspital, Bern, Switzerland
基金
美国国家科学基金会; 瑞士国家科学基金会;
关键词
ALZHEIMERS-DISEASE; PREDICTION; DIAGNOSIS; MODEL; RISK;
D O I
10.1038/s41746-024-01190-w
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Explainable artificial intelligence (XAI) has experienced a vast increase in recognition over the last few years. While the technical developments are manifold, less focus has been placed on the clinical applicability and usability of systems. Moreover, not much attention has been given to XAI systems that can handle multimodal and longitudinal data, which we postulate are important features in many clinical workflows. In this study, we review, from a clinical perspective, the current state of XAI for multimodal and longitudinal datasets and highlight the challenges thereof. Additionally, we propose the XAI orchestrator, an instance that aims to help clinicians with the synopsis of multimodal and longitudinal data, the resulting AI predictions, and the corresponding explainability output. We propose several desirable properties of the XAI orchestrator, such as being adaptive, hierarchical, interactive, and uncertainty-aware.
引用
收藏
页数:10
相关论文
共 100 条
[1]   Multimodal biomedical AI [J].
Acosta, Julian N. ;
Falcone, Guido J. ;
Rajpurkar, Pranav ;
Topol, Eric J. .
NATURE MEDICINE, 2022, 28 (09) :1773-1784
[2]   A survey of ASER members on artificial intelligence in emergency radiology: trends, perceptions, and expectations [J].
Agrawal, Anjali ;
Khatri, Garvit D. ;
Khurana, Bharti ;
Sodickson, Aaron D. ;
Liang, Yuanyuan ;
Dreizin, David .
EMERGENCY RADIOLOGY, 2023, 30 (03) :267-277
[3]   A systematic review of trustworthy and explainable artificial intelligence in healthcare: Assessment of quality, bias risk, and data fusion [J].
Albahri, A. S. ;
Duhaim, Ali M. ;
Fadhel, Mohammed A. ;
Alnoor, Alhamzah ;
Baqer, Noor S. ;
Alzubaidi, Laith ;
Albahri, O. S. ;
Alamoodi, A. H. ;
Bai, Jinshuai ;
Salhi, Asma ;
Santamaria, Jose ;
Ouyang, Chun ;
Gupta, Ashish ;
Gu, Yuantong ;
Deveci, Muhammet .
INFORMATION FUSION, 2023, 96 :156-191
[4]  
Alber M, 2019, J MACH LEARN RES, V20
[5]  
Ancelin M., 2023, shapash
[6]  
Anguita-Ruiz A, 2020, PLOS COMPUT BIOL, V16, DOI [10.1371/journal.pcbi.1007792, 10.1371/journal.pcbi.1007792.r001, 10.1371/journal.pcbi.1007792.r002, 10.1371/journal.pcbi.1007792.r003, 10.1371/journal.pcbi.1007792.r004]
[7]  
[Anonymous], 2023, OpenAI Platform
[8]  
[Anonymous], 2023, H2O.ai
[9]  
Arya V, 2019, Arxiv, DOI [arXiv:1909.03012, 10.48550/arXiv.1909.03012, DOI 10.48550/ARXIV.1909.03012]
[10]  
Ates Emre, 2021, 2021 INT C APPL ART, P1, DOI [10.1109/icapai49758.2021.9462056, DOI 10.1109/ICAPAI49758.2021.9462056]