Transport and localization of indirect excitons in a van der Waals heterostructure

被引:8
作者
Fowler-Gerace, L. H. [1 ]
Zhou, Zhiwen [1 ]
Szwed, E. A. [1 ]
Choksy, D. J. [1 ]
Butov, L. V. [1 ]
机构
[1] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
关键词
DYNAMICS;
D O I
10.1038/s41566-024-01435-w
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Long lifetimes of spatially indirect excitons (IXs), also known as interlayer excitons, allow implementing both quantum exciton systems and long-range exciton transport. The van der Waals heterostructures composed of atomically thin layers of transition-metal dichalcogenides offer the opportunity to explore IXs in moire superlattices. IX transport in transition-metal dichalcogenide heterostructures was intensively studied and diffusive IX transport with 1/e decay distances up to similar to 4 mu m was realized. Here, in a MoSe2/WSe2 heterostructure, we present the IX long-range transport with 1/e decay distances reaching and exceeding 100 mu m. The IX long-range transport vanishes at temperatures above similar to 10 K. With increasing IX density, IX localization followed by IX long-range transport and IX re-entrant localization are observed. The non-monotonic dependence of IX transport on density is in qualitative agreement with the Bose-Hubbard theory prediction for superfluid and insulating phases in periodic potentials of moire superlattices.
引用
收藏
页码:823 / 828
页数:7
相关论文
共 78 条
[1]   Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures [J].
Alexeev, Evgeny M. ;
Ruiz-Tijerina, David A. ;
Danovich, Mark ;
Hamer, Matthew J. ;
Terry, Daniel J. ;
Nayak, Pramoda K. ;
Ahn, Seongjoon ;
Pak, Sangyeon ;
Lee, Juwon ;
Sohn, Jung Inn ;
Molas, Maciej R. ;
Koperski, Maciej ;
Watanabe, Kenji ;
Taniguchi, Takashi ;
Novoselov, Kostya S. ;
Gorbachev, Roman V. ;
Shin, Hyeon Suk ;
Fal'ko, Vladimir I. ;
Tartakovskii, Alexander I. .
NATURE, 2019, 567 (7746) :81-+
[2]   Nonlinear dynamics and inner-ring photoluminescence pattern of indirect excitons [J].
Alloing, Mathieu ;
Lemaitre, Aristide ;
Galopin, Elisabeth ;
Dubin, Francois .
PHYSICAL REVIEW B, 2012, 85 (24)
[3]   Superfluidity of dipolar excitons in a transition metal dichalcogenide double layer [J].
Berman, Oleg L. ;
Kezerashvili, Roman Ya. .
PHYSICAL REVIEW B, 2017, 96 (09)
[4]   Bosonic Delocalization of Dipolar Moire Excitons [J].
Brem, Samuel ;
Malic, Ermin .
NANO LETTERS, 2023, 23 (10) :4627-4633
[5]   Macroscopically ordered state in an exciton system [J].
Butov, LV ;
Gossard, AC ;
Chemla, DS .
NATURE, 2002, 418 (6899) :751-754
[6]   Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure [J].
Cadiz, F. ;
Robert, C. ;
Courtade, E. ;
Manca, M. ;
Martinelli, L. ;
Taniguchi, T. ;
Watanabe, K. ;
Amand, T. ;
Rowe, A. C. H. ;
Paget, D. ;
Urbaszek, B. ;
Marie, X. .
APPLIED PHYSICS LETTERS, 2018, 112 (15)
[7]   Monte Carlo study of the two-dimensional Bose-Hubbard model [J].
Capogrosso-Sansone, Barbara ;
Soeyler, Sebnem Guenes ;
Prokof'ev, Nikolay ;
Svistunov, Boris .
PHYSICAL REVIEW A, 2008, 77 (01)
[8]   Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2 [J].
Chernikov, Alexey ;
Berkelbach, Timothy C. ;
Hill, Heather M. ;
Rigosi, Albert ;
Li, Yilei ;
Aslan, Ozgur Burak ;
Reichman, David R. ;
Hybertsen, Mark S. ;
Heinz, Tony F. .
PHYSICAL REVIEW LETTERS, 2014, 113 (07)
[9]   Trapping Dipolar Exciton Fluids in GaN/(AlGa)N Nanostructures [J].
Chiaruttini, Francois ;
Guillet, Thierry ;
Brimont, Christelle ;
Jouault, Benoit ;
Lefebvre, Pierre ;
Vives, Jessica ;
Chenot, Sebastien ;
Cordier, Yvon ;
Damilano, Benjamin ;
Vladimirova, Maria .
NANO LETTERS, 2019, 19 (08) :4911-4918
[10]   Moire potential impedes interlayer exciton diffusion in van der Waals heterostructures [J].
Choi, Junho ;
Hsu, Wei-Ting ;
Lu, Li-Syuan ;
Sun, Liuyang ;
Cheng, Hui-Yu ;
Lee, Ming-Hao ;
Quan, Jiamin ;
Tran, Kha ;
Wang, Chun-Yuan ;
Staab, Matthew ;
Jones, Kayleigh ;
Taniguchi, Takashi ;
Watanabe, Kenji ;
Chu, Ming-Wen ;
Gwo, Shangjr ;
Kim, Suenne ;
Shih, Chih-Kang ;
Li, Xiaoqin ;
Chang, Wen-Hao .
SCIENCE ADVANCES, 2020, 6 (39)