Preparation, structural, magnetic, and AC electrical properties of synthesized CoFe2O4 nanoparticles and its PVDF composites

被引:56
|
作者
Hussein, Marwa M. [1 ]
Saafan, Samia A. [1 ]
Abosheiasha, Hatem F. [2 ]
Zhou, Di [3 ]
Tishkevich, Daria I. [4 ,5 ]
Abmiotka, Nikita, V [5 ]
Trukhanova, Ekaterina L. [4 ,5 ]
Trukhanov, Alex, V [4 ,5 ]
Trukhanov, Sergei, V [4 ,5 ]
Hossain, M. Khalid [6 ]
Darwish, Moustafa A. [1 ]
机构
[1] Tanta Univ, Fac Sci, Phys Dept, Tanta 31527, Egypt
[2] Tanta Univ, Fac Engn, Engn Phys & Math Dept, Tanta 31511, Egypt
[3] Xi An Jiao Tong Univ, Int Ctr Dielect Res, Sch Elect Sci & Engn, Xian 710049, Peoples R China
[4] Natl Univ Sci & Technol MISiS, Dept Elect Mat Technol, Smart Sensors Lab, Moscow 119049, Russia
[5] NAS Belarus, Lab Magnet Films Phys, SSPA Sci & Pract Mat Res Ctr, 19 P Brovki Str, Minsk 220072, BELARUS
[6] Bangladesh Atom Energy Commiss, Atom Energy Res Estab, Inst Elect, Dhaka 1349, Bangladesh
基金
俄罗斯科学基金会;
关键词
PVDF; Cobalt ferrite; Composites; Structural properties; Dielectric properties; Magnetic properties; DIELECTRIC-PROPERTIES; FERRITE NANOPARTICLES; ZN FERRITES; MN-ZN; TEMPERATURE; CONDUCTIVITY; EXTRACT;
D O I
10.1016/j.matchemphys.2024.129041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This research focuses on the synthesis of nanoscale cobalt spinel ferrite (CoFe2O4) via the sol-gel auto-combustion method and its integration with polyvinylidene fluoride (PVDF) to fabricate CoFe2O4-PVDF nanocomposites. The characterization of cobalt ferrite, using techniques such as X-ray diffraction (XRD), Fouriertransform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), revealed a pristine cubic spinel structure with a mean crystallite size of 46.61 nm, and a homogeneous particle distribution. A key finding is a marked reduction in AC conductivity upon incorporating CoFe2O4 into the PVDF matrix, underscoring its potential in energy storage applications. The composite materials exhibit enhanced magnetic properties, including significant saturation magnetization and increased coercivity, making them prime candidates for high-density magnetic recording applications. Interestingly, the study also unveils that including CoFe2O4 in PVDF does not alter the beta phase of PVDF, highlighting the compatibility and stability of the composite formation. Furthermore, the impedance analysis of the ferrite and composite samples revealed the predominance of grain boundary resistance, offering more profound insights into their electrical behaviour. This finding is pivotal in understanding the electrical conduction mechanisms within these nanocomposites. Despite the comprehensive analysis, the absence of the highest peak in the loss tangent indicates the necessity for further investigation into the dielectric loss dynamics of these materials. Overall, this research significantly advances the understanding of CoFe2O4 nanostructures and their potential applications in advanced nanotechnology, particularly in energy storage and high-density magnetic recording. Future studies are expected to further refine these materials for a broader range of technological applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] The effect of CoFe2O4, CuFe2O4 and Cu/CoFe2O4 nanoparticles on the optical properties and piezoelectric response of the PVDF polymer
    El-Masry, Mai M.
    Ramadan, Rania
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (02):
  • [2] Influence of manganese substitution on structural and magnetic properties of CoFe2O4 nanoparticles
    Adeela, N.
    Maaz, K.
    Khan, U.
    Karim, S.
    Nisar, A.
    Ahmad, M.
    Ali, G.
    Han, X. F.
    Duan, J. L.
    Liu, J.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 639 : 533 - 540
  • [3] The structural, magnetic and magnetic entropy changes on CoFe2O4/CoFe2 composites for magnetic refrigeration application
    Prabhakaran, T.
    Mangalaraja, R. V.
    Denardin, Juliano C.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 444 : 297 - 306
  • [4] Magnetic and Dielectric Properties of CoFe2O4 and CoxZn1-xFe2O4 Nanoparticles Synthesized Using Sol-Gel Method
    Rafeeq, Sewench N.
    Ismail, Mukhils M.
    Sulaiman, Jameel M. A.
    JOURNAL OF MAGNETICS, 2017, 22 (03) : 406 - 413
  • [5] Structural and Magnetic properties of Ultrafine CoFe2O4 Nanoparticles
    Rao, K. S.
    Choudary, G. S. V. R. K.
    Rao, K. H.
    Sujatha, Ch.
    2ND INTERNATIONAL CONFERENCE ON NANOMATERIALS AND TECHNOLOGIES (CNT 2014), 2015, 10 : 19 - 27
  • [6] Enhanced dielectric and magnetic properties of polystyrene added CoFe2O4 magnetic nanoparticles
    Vadivel, M.
    Babu, R. Ramesh
    Ramamurthi, K.
    Arivanandhan, M.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2017, 102 : 1 - 11
  • [7] Composites of Poly(3,4-ethylenedioxythiophene) and CoFe2O4 Nanoparticles: Composition Influence on Structural, Electrical, and Magnetic Properties
    Mendez Elizalde, Matias Lanus
    Acha, Carlos
    Molina, Fernando, V
    Soledad Antonel, P.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (12) : 6884 - 6895
  • [8] Structural, Thermal, Magnetic and Electrical Properties of Polyaniline/CoFe2O4 Nano-composites with Special Reference to the Dye Removal Capability
    Gabal, M. A.
    Al-Juaid, A. A.
    El-Rashed, S.
    Hussein, M. A.
    Al Angari, Y. M.
    Saeed, A.
    JOURNAL OF INORGANIC AND ORGANOMETALLIC POLYMERS AND MATERIALS, 2019, 29 (06) : 2197 - 2213
  • [9] The Magnetic and Colloidal Properties of CoFe2O4 Nanoparticles Synthesized by Co-precipitation
    Gyergyek, Saso
    Drofenik, Miha
    Makovec, Darko
    ACTA CHIMICA SLOVENICA, 2014, 61 (03) : 488 - 496
  • [10] Structural and magnetic properties of CoFe2O4 ferrite nanoparticles doped by gadolinium
    Nikmanesh, Hossein
    Jaberolansar, Elnaz
    Kameli, Parviz
    Varzaneh, Ali Ghotbi
    Mehrabi, Mohsen
    Rostami, Momammad
    NANOTECHNOLOGY, 2022, 33 (04)