Improving Grammar-based Sequence-to-Sequence Modeling with Decomposition and Constraints

被引:0
作者
Lou, Chao [1 ]
Tu, Kewei [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai Engn Res Ctr Intelligent Vis & Imagin, Shanghai, Peoples R China
来源
61ST CONFERENCE OF THE THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 2 | 2023年
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural QCFG is a grammar-based sequence-to-sequence (seq2seq) model with strong inductive biases on hierarchical structures. It excels in interpretability and generalization but suffers from expensive inference. In this paper, we study two low-rank variants of Neural QCFG for faster inference with different trade-offs between efficiency and expressiveness. Furthermore, utilizing the symbolic interface provided by the grammar, we introduce two soft constraints over tree hierarchy and source coverage. We experiment with various datasets and find that our models outperform vanilla Neural QCFG in most settings.
引用
收藏
页码:1918 / 1929
页数:12
相关论文
共 43 条
[1]  
Bahdanau D., 2019, INT C LEARNING REPRE
[2]  
Banarescu Laura., 2013, The 7th Linguistic Annotation Workshop and Interoperability with Discourse, P178
[3]  
Bos J., 2008, P 2008 C SEMANTICS T, P277, DOI [10.3115/1626481.1626503, DOI 10.3115/1626481.1626503]
[4]  
Buhai Darius, 2020, P MACHINE LEARNING R, V119, P1211
[5]  
Chang M., 2008, P NATL C ARTIFICIAL, P1513
[6]  
Chiu JT, 2021, ADV NEUR IN, V34
[7]  
Chiu JT, 2020, PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), P1341
[8]  
Chomsky N., 1959, Information and Control, V2, P137, DOI [DOI 10.1016/S0019-9958(59)90362-6, 10.1016/S0019-9958]
[9]  
Cohen ShayB., 2013, Proc. NAACL HLT. Atlanta, Georgia, P487
[10]  
Devlin J, 2019, 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, P4171