New Expanding Ricci Solitons Starting in Dimension Four

被引:0
作者
Nienhaus, Jan [1 ]
Wink, Matthias [2 ]
机构
[1] UCLA, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
[2] Univ Calif Santa Barbara, Dept Math, South Hall Room 6607, Santa Barbara, CA 93106 USA
关键词
Ricci solitons; Einstein metrics; Warped products;
D O I
10.1007/s12220-024-01778-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there exists a gradient expanding Ricci soliton asymptotic to any given cone over the product of a round sphere and a Ricci flat manifold. In particular we obtain asymptotically conical expanding Ricci solitons with positive scalar curvature on R3xS1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>3 \times S<^>1.$$\end{document} More generally we construct continuous families of gradient expanding Ricci solitons on trivial vector bundles over products of Einstein manifolds with arbitrary Einstein constants.
引用
收藏
页数:18
相关论文
共 28 条
[11]   On Ricci solitons of cohomogeneity one [J].
Dancer, Andrew S. ;
Wang, McKenzie Y. .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2011, 39 (03) :259-292
[12]  
Dancer AS, 2009, MATH RES LETT, V16, P349, DOI 10.4310/MRL.2009.v16.n2.a11
[13]   Non-Kahler Expanding Ricci Solitons [J].
Dancer, Andrew S. ;
Wang, McKenzie Y. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (06) :1107-1133
[14]   Smoothing out positively curved metric cones by Ricci expanders [J].
Deruelle, Alix .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2016, 26 (01) :188-249
[15]  
Feldman M, 2003, J DIFFER GEOM, V65, P169, DOI 10.4310/jdg/1090511686
[16]  
Gastel A, 2004, PROG NONLIN, V59, P81
[17]   Ricci flow from spaces with isolated conical singularities [J].
Gianniotis, Panagiotis ;
Schulze, Felix .
GEOMETRY & TOPOLOGY, 2018, 22 (07) :3925-3977
[18]  
Hamilton RS, 1995, J DIFFER GEOM, P7
[19]  
Conlon RJ, 2019, Arxiv, DOI arXiv:1904.00147
[20]   On the blow-up of four-dimensional Ricci flow singularities [J].
Maximo, Davi .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 692 :153-171