New Expanding Ricci Solitons Starting in Dimension Four

被引:0
作者
Nienhaus, Jan [1 ]
Wink, Matthias [2 ]
机构
[1] UCLA, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
[2] Univ Calif Santa Barbara, Dept Math, South Hall Room 6607, Santa Barbara, CA 93106 USA
关键词
Ricci solitons; Einstein metrics; Warped products;
D O I
10.1007/s12220-024-01778-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that there exists a gradient expanding Ricci soliton asymptotic to any given cone over the product of a round sphere and a Ricci flat manifold. In particular we obtain asymptotically conical expanding Ricci solitons with positive scalar curvature on R3xS1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>3 \times S<^>1.$$\end{document} More generally we construct continuous families of gradient expanding Ricci solitons on trivial vector bundles over products of Einstein manifolds with arbitrary Einstein constants.
引用
收藏
页数:18
相关论文
共 28 条
[1]   RICCI SOLITONS, CONICAL SINGULARITIES, AND NONUNIQUENESS [J].
Angenent, Sigurd B. ;
Knopf, Dan .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2022, 32 (03) :411-489
[2]  
Bamler RH, 2025, Arxiv, DOI arXiv:2305.03154
[3]  
Böhm C, 1999, B SOC MATH FR, V127, P135
[4]   A family of steady Ricci solitons and Ricci-flat metrics [J].
Buzano, M. ;
Dancer, A. S. ;
Wang, M. .
COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2015, 23 (03) :611-638
[5]   NON-KAHLER EXPANDING RICCI SOLITONS, EINSTEIN METRICS, AND EXOTIC CONE STRUCTURES [J].
Buzano, Maria ;
Dancer, Andrew S. ;
Gallaugher, Michael ;
Wang, McKenzie .
PACIFIC JOURNAL OF MATHEMATICS, 2015, 273 (02) :369-394
[6]   Initial value problem for cohomogeneity one gradient Ricci solitons [J].
Buzano, Maria .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (06) :1033-1044
[7]  
Cao HD, 1997, J DIFFER GEOM, V45, P257, DOI 10.4310/jdg/1214459797
[8]  
Carr J., 1981, APPL MATH SCI, V35, DOI DOI 10.1007/978-1-4612-5929-9
[9]  
Chen BL, 2009, J DIFFER GEOM, V82, P363, DOI 10.4310/jdg/1246888488
[10]   EXPANDING KAHLER-RICCI SOLITONS COMING OUT OF KAHLER CONES [J].
Conlon, Ronan J. ;
Deruelle, Alix .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2020, 115 (02) :303-365