On the Solution Existence for Collocation Discretizations of Time-Fractional Subdiffusion Equations

被引:0
|
作者
Franz, Sebastian [1 ]
Kopteva, Natalia [2 ]
机构
[1] Tech Univ Dresden, Inst Sci Comp, Dresden, Germany
[2] Univ Limerick, Dept Math & Stat, Limerick, Ireland
关键词
Time-fractional; Subdiffusion; Higher order; Collocation; Existence; ERROR ANALYSIS; GRADED MESHES;
D O I
10.1007/s10915-024-02619-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Time-fractional parabolic equations with a Caputo time derivative of order alpha is an element of(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} are discretized in time using continuous collocation methods. For such discretizations, we give sufficient conditions for existence and uniqueness of their solutions. Two approaches are explored: the Lax-Milgram Theorem and the eigenfunction expansion. The resulting sufficient conditions, which involve certain mxm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\times m$$\end{document} matrices (where m is the order of the collocation scheme), are verified both analytically, for all m >= 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m\ge 1$$\end{document} and all sets of collocation points, and computationally, for all m <= 20\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ m\le 20$$\end{document}. The semilinear case is also addressed.
引用
收藏
页数:16
相关论文
共 50 条