A physics-informed deep learning approach for solving strongly degenerate parabolic problems
被引:3
作者:
Ambrosio, Pasquale
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
Ambrosio, Pasquale
[1
]
Cuomo, Salvatore
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
Cuomo, Salvatore
[1
]
De Rosa, Mariapia
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
De Rosa, Mariapia
[1
]
机构:
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
Physics-informed neural network (PINN);
Deep learning;
Gas filtration problem;
Strongly degenerate parabolic equations;
EQUATION;
D O I:
10.1007/s00366-024-01961-9
中图分类号:
TP39 [计算机的应用];
学科分类号:
081203 ;
0835 ;
摘要:
In recent years, Scientific Machine Learning (SciML) methods for solving Partial Differential Equations (PDEs) have gained increasing popularity. Within such a paradigm, Physics-Informed Neural Networks (PINNs) are novel deep learning frameworks for solving initial-boundary value problems involving nonlinear PDEs. Recently, PINNs have shown promising results in several application fields. Motivated by applications to gas filtration problems, here we present and evaluate a PINN-based approach to predict solutions to strongly degenerate parabolic problems with asymptotic structure of Laplacian type. To the best of our knowledge, this is one of the first papers demonstrating the efficacy of the PINN framework for solving such kind of problems. In particular, we estimate an appropriate approximation error for some test problems whose analytical solutions are fortunately known. The numerical experiments discussed include two and three-dimensional spatial domains, emphasizing the effectiveness of this approach in predicting accurate solutions.
引用
收藏
页数:17
相关论文
共 19 条
[1]
AKHMEDOV Z. M., 1969, Izv. AN SSSR. Mekhanika Zhidkosti i Gaza, V4, P103
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
Ambrosio, Pasquale
di Napoli, Antonia Passarelli
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cintia, I-80126 Naples, Italy
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 151747, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
Byun, Sun-Sig
Oh, Jehan
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
Oh, Jehan
Wang, Lihe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Math, Iowa City, IA 52242 USA
Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R ChinaSeoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
机构:
Univ Politecn Marche, Dipartimento Ingn Civile Edile & Architettura, Via Brecce Bianche,12, I-60131 Ancona, ItalyUniv Politecn Marche, Dipartimento Ingn Civile Edile & Architettura, Via Brecce Bianche,12, I-60131 Ancona, Italy
Gentile, Andrea
Di Napoli, Antonia Passarelli
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dipartimento Matemat Applica R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Politecn Marche, Dipartimento Ingn Civile Edile & Architettura, Via Brecce Bianche,12, I-60131 Ancona, Italy
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
Ambrosio, Pasquale
di Napoli, Antonia Passarelli
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
机构:
Univ Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Napoli Federico II, Dipartimento Matemat & Applicazioni R Caccioppoli, Via Cintia, I-80126 Naples, Italy
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 151747, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
Byun, Sun-Sig
Oh, Jehan
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
Oh, Jehan
Wang, Lihe
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Math, Iowa City, IA 52242 USA
Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R ChinaSeoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
机构:
Univ Politecn Marche, Dipartimento Ingn Civile Edile & Architettura, Via Brecce Bianche,12, I-60131 Ancona, ItalyUniv Politecn Marche, Dipartimento Ingn Civile Edile & Architettura, Via Brecce Bianche,12, I-60131 Ancona, Italy
Gentile, Andrea
Di Napoli, Antonia Passarelli
论文数: 0引用数: 0
h-index: 0
机构:
Univ Napoli Federico II, Dipartimento Matemat Applica R Caccioppoli, Via Cintia, I-80126 Naples, ItalyUniv Politecn Marche, Dipartimento Ingn Civile Edile & Architettura, Via Brecce Bianche,12, I-60131 Ancona, Italy