Energy-Based Survival Models for Predictive Maintenance

被引:1
|
作者
Holmer, Olov [1 ]
Frisk, Erik [1 ]
Krysander, Mattias [1 ]
机构
[1] Linkoping Univ, Dept Elect Engn, SE-58183 Linkoping, Sweden
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Data-driven; Machine learning; Prognostics; Survival analysis; Time-to-event modeling; NEURAL-NETWORKS;
D O I
10.1016/j.ifacol.2023.10.762
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Predictive maintenance is an effective tool for reducing maintenance costs. Its effectiveness relies heavily on the ability to predict the future state of health of the system, and for this survival models have shown to be very useful. Due to the complex behavior of system degradation, data-driven methods are often preferred, and neural network-based methods have been shown to perform particularly very well. Many neural network- based methods have been proposed and successfully applied to many problems. However, most models rely on assumptions that often are quite restrictive and there is an interest to find more expressive models. Energy-based models are promising candidates for this due to their successful use in other applications, which include natural language processing and computer vision. The focus of this work is therefore to investigate how energy-based models can be used for survival modeling and predictive maintenance. A key step in using energy- based models for survival modeling is the introduction of right-censored data, which, based on a maximum likelihood approach, is shown to be a straightforward process. Another important part of the model is the evaluation of the integral used to normalize the modeled probability density function, and it is shown how this can be done efficiently. The energy-based survival model is evaluated using both simulated data and experimental data in the form of starter battery failures from a fleet of vehicles, and its performance is found to be highly competitive compared to existing models. Code available at https://github.com/oholmer/PySaRe. Copyright (c) 2023 The Authors.
引用
收藏
页码:10862 / 10867
页数:6
相关论文
共 50 条
  • [1] The physics of energy-based models
    Huembeli, Patrick
    Arrazola, Juan Miguel
    Killoran, Nathan
    Mohseni, Masoud
    Wittek, Peter
    QUANTUM MACHINE INTELLIGENCE, 2022, 4 (01)
  • [2] Conjugate Energy-Based Models
    Wu, Hao
    Esmaeili, Babak
    Wick, Michael
    Tristan, Jean-Baptiste
    van de Meent, Jan-Willem
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [3] The physics of energy-based models
    Patrick Huembeli
    Juan Miguel Arrazola
    Nathan Killoran
    Masoud Mohseni
    Peter Wittek
    Quantum Machine Intelligence, 2022, 4
  • [4] Deep Energy-Based NARX Models
    Hendriks, Johannes N.
    Gustafsson, Fredrik K.
    Ribeiro, Antonio H.
    Wills, Adrian G.
    Schon, Thomas B.
    IFAC PAPERSONLINE, 2021, 54 (07): : 505 - 510
  • [5] Energy-based models for environmental biotechnology
    Rodriguez, Jorge
    Lema, Juan M.
    Kleerebezem, Robbert
    TRENDS IN BIOTECHNOLOGY, 2008, 26 (07) : 366 - 374
  • [6] Energy-Based Models of P Systems
    Mauri, Giancarlo
    Leporati, Alberto
    Zandron, Claudio
    MEMBRANE COMPUTING, 2010, 5957 : 104 - 124
  • [7] Residual Energy-Based Models for Text
    Bakhtin, Anton
    Deng, Yuntian
    Gross, Sam
    Ott, Myle
    Ranzato, Marc'Aurelio
    Szlam, Arthur
    JOURNAL OF MACHINE LEARNING RESEARCH, 2021, 22
  • [8] Residual energy-based models for text
    Bakhtin, Anton
    Deng, Yuntian
    Gross, Sam
    Ott, Myle
    Ranzato, Marc'Aurelio
    Szlam, Arthur
    Journal of Machine Learning Research, 2021, 22
  • [9] Energy-Based Reranking: Improving Neural Machine Translation Using Energy-Based Models
    Bhattacharyya, Sumanta
    Rooshenas, Amirmohammad
    Naskar, Subhajit
    Sun, Simeng
    Iyyer, Mohit
    McCallum, Andrew
    59TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 11TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (ACL-IJCNLP 2021), VOL 1, 2021, : 4528 - 4537
  • [10] From predictive to energy-based maintenance paradigm: Achieving cleaner production through functional-productiveness
    Orosnjak, Marko
    Brkljac, Nebojsa
    Sevic, Dragoljub
    Cavic, Maja
    Oros, Dragana
    Pencic, Marko
    JOURNAL OF CLEANER PRODUCTION, 2023, 408