Incidence algebra;
local derivation;
map derivable at zero;
zero product determined algebra;
LIE;
D O I:
10.1080/00927872.2024.2346302
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let (X,<=) be a locally finite pre-ordered set and R be a commutative ring with unity. In this paper we apply the theory of zero product determined algebras to show that each linear map on the incidence algebra I(X,R) which is derivable at zero is a generalized derivation and every local derivation on I(X,R) is a derivation.
机构:
Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R ChinaShaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
Zhang, JH
Ji, GX
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R ChinaShaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
Ji, GX
Cao, HX
论文数: 0引用数: 0
h-index: 0
机构:
Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R ChinaShaanxi Normal Univ, Coll Math & Informat Sci, Xian 710062, Peoples R China
机构:
Uzbekistan Academy of Sciences, V. I. Romanovskiy Institute of Mathematics, TashkentUzbekistan Academy of Sciences, V. I. Romanovskiy Institute of Mathematics, Tashkent
Ayupov S.A.
Kudaibergenov K.K.
论文数: 0引用数: 0
h-index: 0
机构:
Karakalpak State University named after Berdakh, NukusUzbekistan Academy of Sciences, V. I. Romanovskiy Institute of Mathematics, Tashkent
Kudaibergenov K.K.
Yusupov B.B.
论文数: 0引用数: 0
h-index: 0
机构:
National University of Uzbekistan named after Mirzo Ulugbek, TashkentUzbekistan Academy of Sciences, V. I. Romanovskiy Institute of Mathematics, Tashkent