Spectral Tura′n problem on Berge-K2,t hypergraphs

被引:1
作者
Zhu, Zhongxun [1 ]
Zheng, Liyi [2 ]
Wang, Yuan [3 ]
Zhao, Yaping [2 ]
机构
[1] South Cent Minzu Univ, Coll Preparatory Educ, Wuhan 430074, Peoples R China
[2] South Cent Minzu Univ, Fac Math & Stat, Wuhan 430074, Peoples R China
[3] Qiongshan Middle Sch, Haikou 571199, Hainan, Peoples R China
基金
中国国家自然科学基金;
关键词
Berge hypergraph; Turan-problem; spectral radius; RADIUS; NUMBERS;
D O I
10.2298/FIL2409207Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that Turan problem is a classical problem in combinatorics, and the spectral Tur an -type problem is the special form of Turan problem. Given a graph F, a hypergraph is called Berge -F if it can be obtained by replacing each edge in F by a hyperedge containing it. In this paper, we investigate the spectral Tur an -type problem on linear r -uniform hypergraphs without Berge-K2,t, and attain an upper bound of its spectral radius.
引用
收藏
页码:3207 / 3213
页数:7
相关论文
共 23 条
[1]   Hypergraph Based Berge Hypergraphs [J].
Balko, Martin ;
Gerbner, Daniel ;
Kang, Dong Yeap ;
Kim, Younjin ;
Palmer, Cory .
GRAPHS AND COMBINATORICS, 2022, 38 (01)
[2]   ON THE SPECTRAL-RADIUS OF COMPLEMENTARY ACYCLIC MATRICES OF ZEROS AND ONES [J].
BRUALDI, RA ;
SOLHEID, ES .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (02) :265-272
[3]  
Chen M., 2018, J. Anhui Univ. Nat. Sci., V42, P12
[4]   Spectra of uniform hypergraphs [J].
Cooper, Joshua ;
Dutle, Aaron .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (09) :3268-3292
[5]   Asymptotics for Turan numbers of cycles in 3-uniform linear hypergraphs [J].
Ergemlidze, Beka ;
Gyori, Ervin ;
Methuku, Abhishek .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2019, 163 :163-181
[6]   The largest H-eigenvalue and spectral radius of Laplacian tensor of non-odd-bipartite generalized power hypergraphs [J].
Fan, Yi-Zheng ;
Khan, Murad-ul-Islam ;
Tan, Ying-Ying .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 504 :487-502
[7]  
Füredi Z, 2013, BOLYAI SOC MATH STUD, V25, P169
[8]   SPECTRAL RADIUS ON LINEAR r-GRAPHS WITHOUT EXPANDED Kr+l* [J].
Gao, Guorong ;
Chang, A. N. ;
Hou, Yuan .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2022, 36 (02) :1000-1011
[9]   Asyrnptotics for the Turan number of Berge-K2,t [J].
Gerbner, Daniel ;
Methuku, Abhishek ;
Vizer, Mate .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2019, 137 :264-290
[10]   EXTREMAL RESULTS FOR BERGE HYPERGRAPHS [J].
Gerbner, Daniel ;
Palmer, Cory .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2017, 31 (04) :2314-2327