The performance of direction-of-arrival (DOA) estimation algorithms degrades when a partly calibrated array is adopted due to the existing unknown gain-phase uncertainties. In addition, the spatial discretized searching grid also limits the performance improvement and effectiveness of subspace-based DOA estimation algorithms, especially when the true angles do not lie on the grid points which is referred to the off-grid problem alike. In this paper, a self-calibration DOA estimation algorithm is proposed which solves the array calibration and off-grid problems simultaneously. Firstly, the signal model for a partly calibrated array with gain-phase uncertainties is established. To suppress the off-grid errors, an optimization problem for joint parameters estimation is constructed by substituting the approximation of the steering vector into a newly constructed objective function. The alternative minimization (AM) algorithm is employed to calculate the joint DOA and gain-phase uncertainty estimations. Within each iteration step of the optimization problem, a closed-form solution is derived that guarantees the convergence of the proposed algorithm. Furthermore, the Cramér-Rao bound (CRB) for the partly calibrated arrays with unknown gain-phase uncertainties is also derived and analyzed in the paper. Simulation results demonstrate the effectiveness of the proposed algorithm. © 2020, Electromagnetics Academy. All rights reserved.