Denoising Multiphase Functional Cardiac CT Angiography Using Deep Learning and Synthetic Data

被引:3
作者
Sandfort, Veit [1 ]
Willemink, Martin J. [1 ]
Codari, Marina [1 ]
Mastrodicasa, Domenico [1 ]
Fleischmann, Dominik [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Radiol, 300 Pasteur Dr,S-072, Stanford, CA 94305 USA
关键词
Cardiac CT; Angiography; Deep Learning; Image Denoising;
D O I
10.1148/ryai.230153
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning-based denoising of dose-modulated cardiac CT an-giographic examinations using a three-dimensional approach resulted in excellent image quality compared with conventional methods, and left ventricular segmentation on the denoised images were strongly correlated with expert manual segmentations
引用
收藏
页数:6
相关论文
共 50 条
[31]   DEEP LEARNING FOR UNSUPERVISED DENOISING OF RADAR SOUNDER DATA [J].
Donini, Elena ;
Zuech, Alessandro ;
Bruzzone, Lorenzo ;
Bovolo, Francesca .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :7804-7807
[32]   Deep-learning-based image reconstruction with limited data: generating synthetic raw data using deep learning [J].
Zijlstra, Frank ;
While, Peter Thomas .
MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2024, 37 (06) :1059-1076
[33]   Synthetic Aperture Radar Image Denoising Algorithm Based on Deep Learning [J].
Fu Xiangwei ;
Shan Huilin ;
Lu Zongkui ;
Wang Xingtao .
ACTA OPTICA SINICA, 2023, 43 (06)
[34]   Deep Learning Models for Rapid Denoising of 5D Cardiac PhotonCounting Micro-CT Images [J].
Nadkarni, R. ;
Clark, D. P. ;
Allphin, A. ;
Badea, C. T. .
MEDICAL IMAGING 2024: PHYSICS OF MEDICAL IMAGING, PT 1, 2024, 12925
[35]   Denoising high resolution multispectral images using deep learning approach [J].
Ojha, Utkarsh ;
Garg, Ankur .
2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, :871-875
[36]   Improving Brain Tumor Classification with Deep Learning Using Synthetic Data [J].
Yapici, Muhammed Mutlu ;
Karakis, Rukiye ;
Gurkahraman, Kali .
CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03) :5049-5067
[37]   Deep learning assisted denoising of fast polychromatic X-ray micro-CT imaging of multiphase flow in porous media [J].
Mathew, E. S. ;
Jackson, S. J. ;
Wildenschild, D. ;
Mostaghimi, P. ;
Tang, K. ;
Armstrong, R. T. .
COMPUTERS & GEOSCIENCES, 2025, 204
[38]   SYNTHETIC CT GENERATION USING MRI WITH DEEP LEARNING: HOW DOES THE SELECTION OF INPUT IMAGES AFFECT THE RESULTING SYNTHETIC CT? [J].
Leynes, Andrew P. ;
Larson, Peder E. Z. .
2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, :6692-6696
[39]   Comparison of deep learning-based denoising methods in cardiac SPECT [J].
Sohlberg, Antti ;
Kangasmaa, Tuija ;
Constable, Chris ;
Tikkakoski, Antti .
EJNMMI PHYSICS, 2023, 10 (01)
[40]   Comparison of deep learning-based denoising methods in cardiac SPECT [J].
Antti Sohlberg ;
Tuija Kangasmaa ;
Chris Constable ;
Antti Tikkakoski .
EJNMMI Physics, 10